UDC 512.5

P. Keef (Whitman College, USA),P. Danchev (Plovdiv Univ. "P. Hilendarski", Bulgaria)

ON PROPERTIES OF *n*-TOTALLY PROJECTIVE ABELIAN *p*-GROUPS ПРО ВЛАСТИВОСТІ *n*-ТОТАЛЬНО ПРОЕКЦІЙНИХ АБЕЛЕВИХ *p*-ГРУП

We prove some properties of *n*-totally projective abelian *p*-groups. Under some additional conditions for the group structure, we obtain an equivalence between the notions of *n*-total projectivity and strong *n*-total projectivity. We also show that *n*-totally projective *A*-groups are isomorphic if they have isometric p^n -socles.

Доведено деякі властивості *n*-тотально проекційних абелевих *p*-груп. При деяких додаткових умовах на будову груп встановлено еквівалентність понять *n*-тотальної проективності та сильної *n*-тотальної проективності. Також показано, що *n*-тотально проективні *A*-групи ізоморфні, якщо вони мають ізометричні *pⁿ*-цоколі.

Introduction. Throughout this paper, let us assume that all groups are additive p-primary groups and n is a fixed natural. Foremost, we recall some crucial notions from [7] and [8] respectively.

Definition 1. A group G is said to be n-simply presented if there exists a p^n -bounded subgroup P of G such that G/P is simply presented. A summand of an n-simply presented group is called n-balanced projective.

Definition 2. A group G is said to be strongly n-simply presented = nicely n-simply presented if there exists a nice p^n -bounded subgroup N of G such that G/N is simply presented. A summand of a strongly n-simply presented group is called strongly n-balanced projective.

Clearly, strongly n-simply presented groups are n-simply presented, while the converse fails (see, e.g., [7]).

Definition 3. A group G is called n-totally projective if, for all ordinals λ , $G/p^{\lambda}G$ is $p^{\lambda+n}$ -projective.

Definition 4. A group G is called strongly n-totally projective if, for any ordinal λ , $G/p^{\lambda+n}G$ is $p^{\lambda+n}$ -projective.

Apparently, strongly *n*-totally projective groups are *n*-totally projective, whereas the converse is wrong (see, for instance, [8]). Moreover, (strongly) *n*-simply presented groups are themselves (strongly) *n*-totally projective, but the converse is untrue (see, for example, [8]).

Definition 5. A group G is called weakly n-totally projective if, for each ordinal λ , $G/p^{\lambda}G$ is $p^{\lambda+2n}$ -projective.

Evidently, *n*-totally projective groups are weakly *n*-totally projective with the exception of the reverse implication which is not valid.

The purpose of the present article is to explore some critical properties of *n*-totally projective groups, especially when some of the three variants of *n*-total projectivity do coincide. In fact, we show that if the group G is an A-group, then the concepts of being *n*-totally projective and strongly *n*-totally projective will be the same (Theorem 1). However, this is not the case for weakly *n*totally projective groups (Example 1). We also establish that two *n*-totally projective A-groups are isomorphic if and only if they have isometric p^n -socles, i.e., isomorphic socles whose isomorphism preserves heights as computed in the whole group (Corollary 1). Likewise, we exhibit a concrete example of a strongly *n*-totally projective group with finite first Ulm subgroup that is not $\omega + n$ - totally $p^{\omega+n}$ -projective (Example 2). Finally, some assertions about (strongly) *n*-simply presented and *n*-balanced projective groups are obtained as well (Proposition 3 and Corollaries 2–4).

We note for readers' convenience that all undefined explicitly notations and the terminology are standard and follow essentially those from [2–4]. Besides, for shortness, we will denote the torsion product Tor (G, H) of the groups G and H by $G \bigtriangledown H$. Also, for any group G and ordinal λ , $L_{\lambda}G$ is its completion in the p^{λ} -topology and let $E_{\lambda}G = (L_{\lambda}G)/G$.

Main results. We begin here with the equivalence of strong n-total projectivity and n-total projectivity under the extra assumption that the full group is an A-group. Specifically, the following holds:

Theorem 1. Suppose G is an A-group. Then the following three conditions are equivalent:

(a) *G* is *n*-totally projective;

(b) *G* is strongly *n*-totally projective;

(c) for every limit ordinal λ of uncountable cofinality, we have $p^n E_{\lambda}G = \{0\}$.

Proof. We first turn to a few thoughts on A-groups introduced in [4]. Let λ be a limit ordinal, and let

$$0 \to G \to H \to K \to 0 \tag{1}$$

be a p^{λ} -pure exact sequence with H a totally projective group of length λ and K a totally projective group. If λ has countable cofinality or $p^{\lambda}K = \{0\}$, then G is also totally projective. Otherwise, G is said to be a λ -elementary A-group. Note that $p^{\lambda}K$ is naturally isomorphic to $(L_{\lambda}G)/G = E_{\lambda}$ where $L_{\lambda}G$ is the completion in the p^{λ} -topology. An A-group G is then defined to be the direct sum of a collection of λ -elementary A-groups, for various ordinals of uncountable cofinality. Note that these groups G are classified in [4] up to an isomorphism using their Ulm invariants, together with the Ulm invariants of the totally projective groups $E_{\lambda}G$, over all limit ordinals λ of uncountable cofinality.

Next, since a direct sum of groups is (strongly) *n*-totally projective if and only if each of its terms has that property, and since the functor $E_{\lambda}G$ also respects direct sums (because λ has uncountable cofinality), we may assume that G is a λ -elementary A-group and that we possess a representing sequence as in (1). Notice that for any limit ordinal $\beta < \lambda$, we have a balanced-exact sequence implied via (1)

$$0 \to G/p^{\beta}G \to H/p^{\beta}H \to K/p^{\beta}K \to 0.$$

On the other hand, since K is totally projective, $K/p^{\beta}K$ is p^{β} -projective, so that this sequence splits. It now follows that $G/p^{\beta}G$ is a summand of the totally projective group $H/p^{\beta}H$, and hence it is p^{β} -projective too. Our result will therefore follow from the statement:

Claim. If λ is a limit ordinal of uncountable cofinality and G is a λ -elementary A-group, then $G \cong G/p^{\lambda}G \cong G/p^{\lambda+n}G$ is $p^{\lambda+n}$ -projective if and only if $p^n E_{\lambda}G \cong p^{\lambda+n}K = \{0\}$.

In order to prove that Claim, observe that (1) can actually be viewed as a p^{λ} -pure projective resolution of K. Compare this with the standard p^{λ} -pure projective resolution of K given by

$$0 \to M_{\lambda} \bigtriangledown K \to H_{\lambda} \bigtriangledown K \to K \to 0$$

where M_{λ} is a λ -elementary S-group of length λ and H_{λ} is the Prüfer group of length λ (see [8]). By virtue of the Schanuel's lemma (cf. [3]), there is an isomorphism

ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 6

$$(M_{\lambda} \bigtriangledown K) \oplus H \cong (H_{\lambda} \bigtriangledown K) \oplus G.$$

Since H and $H_{\lambda} \bigtriangledown K$ are obviously p^{λ} -projective, it suffices to show that $M_{\lambda} \bigtriangledown K$ is $p^{\lambda+n}$ -projective if and only if $p^{\lambda+n}K = \{0\}$.

To this aim, suppose first that $p^{\lambda+n}K = \{0\}$; so in particular, K is $p^{\lambda+n}$ -projective, whence $M_{\lambda} \bigtriangledown K$ is $p^{\lambda+n}$ -projective (see [9]). For the converse, we see that $H_{\lambda} \bigtriangledown K$ will also be complete in the p^{λ} -topology. Consequently, $E_{\lambda}(M_{\lambda} \bigtriangledown K) \cong E_{\lambda}G \cong p^{\lambda}K$. Supposing $p^{\lambda+n}K \neq \{0\}$, we need to demonstrate that $M_{\lambda} \bigtriangledown K$ is not $p^{\lambda+n}$ -projective. Considering a direct summand of K, it suffices to assume that $p^{\lambda}K$ is cyclic of order p^m , where m > n. Let M be a p^{λ} -high subgroup of K. It follows that M is also $p^{\lambda+n}$ -high in K and hence it is $p^{\lambda+n+1}$ -pure in K. In addition, $K/M \cong \mathbb{Z}(p^{\infty})$, so that $M_{\lambda} \bigtriangledown (K/M) \cong M_{\lambda}$. It would then follow that the sequence

$$0 \to M_{\lambda} \bigtriangledown M \to M_{\lambda} \bigtriangledown K \to M_{\lambda} \to 0$$

is $p^{\lambda+n+1}$ -pure. If $M_{\lambda} \bigtriangledown K$ actually were $p^{\lambda+n}$ -projective, then Lemma 2.1 (g) from [8] would imply that the sequence splits. Therefore, M_{λ} is isomorphic to a summand of $M_{\lambda} \bigtriangledown K$. However, $E_{\lambda}(M_{\lambda} \bigtriangledown K) \cong p^{\lambda}K$ is reduced, whereas $E_{\lambda}M_{\lambda} \cong \mathbf{Z}(p^{\infty})$ is divisible. This contradiction proves the entire Claim and hence the theorem.

As a consequence, we yield the following result concerning the isomorphism characterization of n-totally projective A-groups.

Corollary 1. Suppose G and G' are n-totally projective A-groups. Then G and G' are isomorphic if and only if $G[p^n]$ and $G'[p^n]$ are isometric.

Proof. Applying Theorem 1, G and G' are both strongly n-totally projective and both $E_{\lambda}G, E_{\lambda}G'$ are p^n -bounded for each limit ordinal λ of uncountable cofinality. Since G and G' clearly possess identical Ulm invariants, we need to illustrate that for for any λ as above we have $E_{\lambda}G \cong E_{\lambda}G'$. It is readily checked that every element of $E_{\lambda}G$ can be represented by a neat Cauchy net $\{x_i\}_{i < \alpha}$ where each $x_i \in G[p^n]$. This means that $E_{\lambda}G$ can also be described as $L_{\lambda}(G[p^n])/(G[p^n])$, where the numerator of this expression consists of the inverse limit of $G[p^n]/(p^{\alpha}G)[p^n]$ over all $\alpha < \lambda$. Since $G[p^n]$ and $G'[p^n]$ are isometric, by what we have shown above it follows that $E_{\lambda}G$ and $E_{\lambda}G'$ are isomorphic for all λ . But employing [5], we can conclude that $G \cong G'$, as claimed.

Corollary 1 is proved.

The following example shows that Theorem 1 is not longer true for weakly *n*-totally projective groups.

Example 1. There exists a weakly *n*-totally projective *A*-group which is not *n*-totally projective.

Proof. Construct any A-group G of length ω_1 which is proper p^{ω_1+2} -projective, that is, p^{ω_1+2} -projective but not p^{ω_1+1} -projective. For example, if M_{ω_1} is an elementary S-group of length ω_1 , and H_{ω_1+2} is the Prüfer group of length $\omega_1 + 2$, then $G = H_{\omega_1+2} \bigtriangledown M_{\omega_1}$ will be such a group. Furthermore, it follows immediately that G is weakly 1-totally projective but it is not 1-totally projective as desired.

The next example shows that the class of strongly *n*-totally projective groups is not contained in the class of $\omega + n$ -totally $p^{\omega+n}$ -projective groups. Recall that in [1] a group G is said to be $\omega + n$ -totally $p^{\omega+n}$ -projective group if each $p^{\omega+n}$ -bounded subgroup is $p^{\omega+n}$ -projective.

Example 2. There exists a strongly *n*-totally projective group with finite inseparable first Ulm subgroup which is not $\omega + n$ -totally $p^{\omega+n}$ -projective.

Proof. Suppose A is a separable $p^{\omega+1}$ -projective group whose socle A[p] is not \aleph_0 -coseparable (such a group exists even in ZFC and is common to construct) and H is a countable group with $p^{\omega}H$ being finite and $p^{\omega+n}H \neq 0$. Letting $G = A \oplus H$, then G is strongly n-totally projective. Indeed, it is pretty easy to see that $G/p^{\lambda+n}G$ is $p^{\lambda+n}$ -projective for any (limit) ordinal λ because both A and H are n-totally projective. Since G is neither a direct sum of countable groups nor a $p^{\omega+n}$ -projective group, if it were $\omega + n$ -totally $p^{\omega+n}$ -projective, it would be proper. However, appealing to Theorem 3.1 of [1], this cannot be happen.

Another example in this way can be found in ([6], Example 2.5).

On the other hand, $\omega + n$ -totally $p^{\omega+n}$ -projective groups are contained in the class of *n*-totally projective groups. In fact, by a plain combination of Proposition 3.1 and Theorem 1.2 (a₁) in [6] along with [7], $\omega + n$ -totally $p^{\omega+n}$ -projective groups are themselves *n*-simply presented and thus they are *n*-totally projective, as asserted.

In this way the following statement is true as well. Imitating [1], recall that a group is said to be ω -totally $p^{\omega+n}$ -projective if every its separable subgroup is $p^{\omega+n}$ -projective.

Proposition 1. Each *n*-totally projective group with countable first Ulm subgroup is ω -totally $p^{\omega+n}$ -projective.

Proof. If G is n-totally projective, then with the aid of Definition 3 we obtain that the quotient $G/p^{\omega}G$ will actually be $p^{\omega+n}$ -projective, and so ω -totally $p^{\omega+n}$ -projective. Since $p^{\omega}G$ is countable and the ω -totally $p^{\omega+n}$ -projective groups are closed under ω_1 -bijections (see [6]), G will be ω -totally $p^{\omega+n}$ -projective, as expected.

We will be next concentrated to some characteristic properties of (strongly) *n*-totally projective groups.

Proposition 2. Let $P \leq G[p]$.

(a) If G is (strongly) n-totally projective, then G/P is (strongly) n + 1-totally projective.

(b) If G/P is (strongly) n-totally projective, then G is (strongly) n + 1-totally projective.

Proof. We shall prove the statement only for *n*-totally projective groups since the situation with strongly *n*-totally projective groups is quite similar.

(a) If λ is an ordinal and $G_{\lambda} = G/p^{\lambda}G$, then there is an exact sequence

$$0 \to (P + p^{\lambda}G)/p^{\lambda}G \to G_{\lambda} \to G/(P + p^{\lambda}G) \to 0.$$

Since $p((P + p^{\lambda}G)/p^{\lambda}G) = \{0\}$ and G_{λ} is $p^{\lambda+n}$ -projective, it follows that $H = G/(P + p^{\lambda}G)$ is $p^{\lambda+n+1}$ -projective. However, if $Q = (P + p^{\lambda}G)/P \subseteq A = G/P$, then $Q \subseteq p^{\lambda}A$. In addition,

$$H \cong (G/P)/((P + p^{\lambda}G)/P) = A/Q$$

is $p^{\lambda+n+1}$ -projective. Moreover, it follows also that

$$H_{\lambda} = H/p^{\lambda}H \cong A/Q/p^{\lambda}(A/Q) = A/Q/p^{\lambda}A/Q \cong A/p^{\lambda}A = A_{\lambda}$$

is $p^{\lambda+n+1}$ -projective. Note that this implies that A is n+1-totally projective, as required.

ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 6

(b) Suppose now that A = G/P is *n*-totally projective. If $P' = G[p]/P \subseteq A[p]$, then by what we have already shown above $pG \cong G/G[p] \cong (G/P)/(G[p]/P) = A/P'$ is n + 1-totally projective. However, this easily forces by [8] that G itself is n + 1-totally projective, as claimed.

We will now establish some affirmations for n-simply presented groups and their direct summands called n-balanced projective groups. So, the next few results show that an n-balanced projective group must be pretty close to being n-simply presented, since they illustrate that the complementary summand can be chosen in special ways. Recall that a group B will be said to be a *BT*-group if it is isomorphic to a balanced subgroup of a totally projective group. It plainly follows that a *BT*-group is also an *IT*-group (i.e., one that is isomorphic to an isotype subgroup of a totally projective group).

Proposition 3. Suppose G is a group of length λ . Then the following hold:

(a) If G is n-balanced projective, then there is a BT-group X with $p^{\lambda}X = \{0\}$ such that $G \oplus X$ is n-simply presented.

(b) If G is strongly n-balanced projective, then there is an IT-group K with $p^{\lambda}K = \{0\}$ such that $G \oplus K$ is strongly n-simply presented.

Proof. (a) Using the notation of Theorem 1.2 from [7], we start with a balanced projective resolution

$$0 \to X \to Y \to G \to 0,$$

so that X is a BT-group. Knowing this, we can construct an n-balanced projective resolution

$$0 \to X \to Z \to G \to 0$$

of G. Since G is n-balanced projective, we can conclude that $G \oplus X \to Z$ is n-simply presented, as required.

(b) Using the notations of Lemma 1.4 and Theorem 1.5 of [7], there is a strongly n-balanced projective resolution of G given by

$$0 \to K(G) \to H(G) \to G \to 0$$

where $H(G) = \mathcal{K}(G[p^n])$ is strongly *n*-simply presented. Note that $H(G)[p^n]$ is isometric to the valuated direct sum $G[p^n] \oplus K(G)[p^n]$. It follows that $K(G)[p^n]$ embeds isometrically in $H(G)/G[p^n]$. Therefore K(G) embeds as an isotype subgroup of $H(G)/G[p^n]$, which is obviously totally projective.

As immediate consequences, we derive the following corollaries.

Corollary 2. Let G be a (strongly) n-balanced projective group of countable length. Then there exists a direct sum of countable groups X of countable length such that $G \oplus X$ is (strongly) n-simply presented.

Proof. Since *IT*-groups of countable length are direct sums of countable groups, we may directly apply Proposition 3.

Corollary 3. Let G be an n-balanced projective group. If the balanced projective dimension of G is at most 1, then there is a totally projective group X such that $G \oplus X$ is n-simply presented. **Proof.** Again, if

$$0 \to X \to Y \to G \to 0$$

is a balanced projective resolution of G, then X will be totally projective, and $G \oplus X$ will be n-simply presented.

Corollary 4. Let G and G' be strongly n-balanced projective groups. If $G[p^n]$ is isometric to $G'[p^n]$, so that they have the same length λ , then there are IT-groups K and K' of length at most λ such that $G \oplus K$ is isomorphic to $G' \oplus K'$.

Proof. An isometry $G[p^n] \to G'[p^n]$ leads to an isomorphism $H(G) \to H(G')$, and thus the result follows from Proposition 3 (b).

We close the work with the following three problems:

Problem 1. Find an ω -totally $p^{\omega+n}$ -projective group which is not *n*-totally projective, and an *n*-totally projective group with a uncountable first Ulm subgroup that is not ω -totally $p^{\omega+n}$ -projective.

Problem 2. Does it follow that *n*-simply presented *A*-groups are strongly *n*-simply presented?

Problem 3. Does there exist a p^{ω_1+1} -projective N-group of length ω_1 which is not totally projective, i.e., is not a direct sum of countable groups?

- Danchev P., Keef P. An application of set theory to ω + n-totally p^{ω+n}-projective primary abelian groups // Mediterr. J. Math. - 2011. - 8, № 4. - P. 525-542.
- 2. Fuchs L. Infinite abelian groups. New York; London: Acad. Press, 1970, 1973. Vol. 1, 2.
- 3. Griffith Ph. Infinite abelian group theory. Chicago; London: Univ. Chicago Press, 1970.
- 4. *Hill P*. On the structure of abelian *p*-groups // Trans. Amer. Math. Soc. 1985. **288**, № 2. P. 505–525.
- Hill P., Megibben C. On direct sums of countable groups and generalizations // Stud. Abelian Groups. 1968. P. 183–206.
- 6. Keef P. On ω_1 - $p^{\omega+n}$ -projective primary abelian groups // J. Algebra Numb. Th. Acad. 2010. 1, No 1. P. 41–75.
- 7. Keef P., Danchev P. On n-simply presented primary abelian groups // Houston J. Math. 2012. 38, № 3.
- 8. Keef P., Danchev P. On m, n-balanced projective and m, n-totally projective primary abelian groups (to appear).
- 9. Nunke R. On the structure of tor II // Pacif. J. Math. 1967. 22. P. 453-464.

Received 07.10.11