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A MATRIX APPROACH TO THE BINOMIAL THEOREM
MATPAYHW MIIXII IO BIHOMIAJLHOI TEOPEMHA

Motivated by the formula ™ = Zk_o ( k) (z— 1)’“7 we investigate factorizations of the lower triangular Toeplitz matrix

with (4, )th entry equal to "7 via the Pascal matrix. In this way, a new computational approach to a generalization of
the binomial theorem is introduced. Numerous combinatorial identities are obtained from these matrix relations.

Ha ocnoBi gopmymu =" = E . k (z — 1)" postsiHyTO (hakTOpH3alii HIKHBOTPUKYTHOT Marpuii Temtiua, (7, 7)-
=0

i enmeMeHT sikOi mopiBHIOE '~ 7, 3 BHKOpuCTaHHsAM Marpull Ilackams. TUM caMuM YBEJEHO HOBHU OOYHCIIOBATbHHI

MiJIXiZ 10 y3aranbHEeHHs OiHOMiaibHOI TeopeMH. [3 BUKOPHCTaHHSIM LUX MAaTPUYHHX CIIBBIIHOIICHb OTPUMAHO YHCIICHHI

KOMOIHATOPHI TOTOXXHOCTI.

1. Introduction. The Pascal matrix of order n, denoted by Py, [z] = [p; j[z]], ¢,j = 1,...,n,isa
lower triangular matrix with elements equal to
xi_j('b._l)v Z_]>07
0, i—j<0,
and its inverse Pp[z] ™" = [p] ;[2]], 4,5 = 1,...,7n, has the elements equal to
(1 —1
o(32]) imizo
p;,j [z] = Jj—1
0, i—j<0.

For the sake of simplicity we denote P, [1] with P,. Many properties of the Pascal matrix have
been examined in the recent literature (see for instance [1, 11, 12]). We are particulary interested on
the usage of the Pascal matrix as a powerful tool for deriving combinatorial identities. Precisely,
recalling that a Toeplitz matrix is matrix having constant entries along the diagonals, then the Pascal
matrix can be factorized in a form P,, = T,,R,, or P,, = L, T},, where T}, denotes the n x n lower
triangular Toeplitz matrix. Usually, the Toeplitz matrix 75, is filled with the numbers from the well-
known sequences. By equalizing the (7, j) th elements of the matrices in these matrix equalities, we
establish correlations between binomial coefficients and the terms from the well-known sequences.

Following this idea, some combinatorial identities via Fibonacci numbers were derived in [4, 14],
as well as the identities for the Catalan numbers [9], Bell [10], Bernoulli [13] and the Lucas numbers
[15] were also computed. In [5] the authors derived identities by using the factorizations of the
Pascal matrix via generalized second order recurrent matrix. Some combinatorial identities were also
computed in [2, 3, 6 — 8] by various matrix methods.

The starting point of the present paper is one of the most beautiful formulas in mathematics, a
particular case of the binomial theorem

x”—§é<zyx—nﬁ (1.1)
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The essential observation is that the binomial coefficient in (1.1) may be considered as the element
of the Pascal matrix P,, and the left-hand side of (1.1) may be considered as the element of the lower
triangular Toeplitz matrix with (i, ) th entry equal to 2°~7, which is denoted by Zhang [11] with
Spx]. Therefore, our goal is to factorize the matrix S,,[z] via the Pascal matrix P, and to give some
combinatorial identities via this computational method. Some of our results represent generalizations
of some well-known identities, such as the binomial theorem (1.1). These identities involve the
binomial coefficients and the hypergeometric function oF}. Recall that the hypergeometric function
9F1(a,b,c; z) is defined by

k(b
oF1(a,b,c;2) = Z (O k"
where
a(a+1)...(a+n—-1), n>0,
1, n =0,

is the well-known rising factorial symbol.
2. The results. First we find a matrix R,,[x] which establishes the relation between matrices

Splx] and Pp,.
Theorem 2.1. The matrix Ry(x] = [rij[z]], i, = 1,...,n, € R, whose entries are de-
fined by
0 (50)) 2Rt i) i34
rigle] = j—1
0, i <7,
satisfies
Splz] = PaRy[z]. 2.1

Proof. Our goal is to prove R, [z] = P, 1S, [z]. Let us denote the sum Z::1 i xSk 5] by
m; jlx]. It is easy to show that m; j[x] = 0 = r; j[x] for i < j. On the other hand, in the case i > j

we have
i i—1 < i—1
i~k [t k—j i—j+k - k
mijlz sz kSkgle kZ( b’ <k - 1) T kzo(_l)l " <j - 1> o
j —
After applying the transformatlons
] . ] k
e (I E e e B e
; _ —i— —1)!
— j+k—1 — (1 j k j—i—k 1)!
L. 1, — 1 s j — 7, k .’L‘k
s —1 =] —
(=1) (j=D'GE—4)! z;] k!

o i—1
— (~1)" (j - 1) JFi(1,) — i)
we show that m; j[z] = r; j[x] in the case ¢ > j, which was our original attention.
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Corollary 2.1. For positive integers i and j satisfying © > j and real x, the following identity
is valid

. i—7 . .
(; B i) > (-F <Z;‘7) 2Fi(1,—k; jiw) = a' 7. (2.2)

k=0
i

Proof. From matrix relation (2.1) we obtain s; j[z] = Zk

_Pik Tk,j[@], or in an expanded form
=j

pi = Z (o) o (B2)) emi = ki)

k=j

—1
Making use of the formula for the binomial coefficients <T> (7) = (;) (r l>’ together with
m m —

the substitution k — k + j, we finish the proof.
Remark 2.1. By putting j = 1 in equality (2.2), we obtain the binomial theorem (1.1).
In the following identity we establish the relation between hypergeometric functions 2 F7.
Corollary 2.2. The following identity is valid for arbitrary nonnegative integers i and j satis-
fingi > jand x € R

. 1 .
(?) +x<l , >2F1(1,j—z'+1;1—z';a:) - (l) JFi(1,j — i i), 2.3)
J J J
Proof. 1t is straightforward to show that
L =y
(Sn[x]il)id' = -, 1= ] + L
0, otherwise.

We are now in a position to write the inverse of the R,,[z] as Ry,[z] ™! = S, [z] "' P,. In this way we

obtain
1, =7,
-1 _ i—1 i — 2 ) .
0, i < j.

From relation P, = S, [7]R,[x]~! we get identity
1 i 1 _9 o
(o) =2 (Gn) G+
I k=j+1 I 7=

valid for all positive integers i > j. After the replacement (i, ) — (i + 1,5 + 1), we get equality

(- E () +( 1) e
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valid for all nonnegative integers ¢ > j. Our problem now reduces to show the following two

relations:

& ik i
Z $k< . ) =—x'J + <> 2F1(17j - Za —Z,l'), (24)
=0 J J

i—j—1 .

— k-1 -1
Z x ( > (Z , >2F1(1,j—z'+1;1—i;x). (2.5)
J

=0

In order to prove (2.4), we start from its left-hand side and transform it into

e 1—k i_j 1—k ; ] ] i)y ¥
k - L i—j k - 0] — Yk
St () et () e S P

k=0 k=0 =0

and (2.4) now immediately follows. The reader may establish (2.5) in a similar way, and the proof is
therefore completed.
Remark 2.2. Some pedestrian manipulations yields that in the case j = 1, relation (2.3) reduces

1 i1
to the well-known identity Z; 0 k= xil
= x J—

In the rest of this section we investigate another factorization of the matrix S,[z] via the Pascal
matrix, analogical to (2.1).

Theorem 2.2. The matrix L, [x] = [l; [z]], i,j = 1,...,n, x € R, whose entries are defined
by
! (-1 . . 1 S
4 , F(lLi+1li—j+2—=), i>j,
Lijle) = { (T +a) - (j_1>2 1( ( 1= x) t=]
0, 1< 7,
satisfies
Salt] = Laf2]P. (2.6)

Proof. We prove L,[z] = S,[z]P, L. Let us denote the sum Z siklz]py, ; by tij[z]. We
have t; j[x] = 0 = [; j[z] for i < j, while in the case i > j,

: / = i—j—k (J—1+k
z] = Zsi,k[x]pk,j = Zﬂf (1) j—1 =
k=j k=0

_ Zaji—j—k (_1)k<j ;i—il' k) _ Z gk (1) <j ;ii_ k) (2.7)
k=0

k=i—j+1

Now it suffices to prove the following two identities

gk k(TR
2D ( j-1 ><1+x>f’ 28)
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00 o . _1)i—J ;
T P BRI P T

k=i—j+1

In order to prove (2.8), we use the binomial theorem and obtain

e ()-S5 () -

_ioo —J 1k_1:i 142\’

ol k x) ol x ’
k=0

The identity (2.9) can be verified by applying the following transformations:

i F=ik (1)K <j ;iJlr k) _ ixfkfl (—1)it1Hk <;t’i) _

k=i—j+1 k=0

(=i ; i g (i + 1) (—1/2)"
N x (=D Z—j+ !k:O (t—7+2)% k'

S

Since formulas (2.8) and (2.9) are valid, we apply them on (2.7), and the proof is completed.
Corollary 2.3. For integers i > j > 0 and real x we have

i i ,
Z(—D”“(Z k””. >2F1 (1,i+1;i—k+2;—> —
— -

k=j

x i+l 1
= <1+x> oF1 <1,z’—|—1;2 7+ 2 1+) (2.10)

Proof. From (2.6) we obtain

7k (1+z)k\j—1

=j
' k—1 L 1
kz: Z+1 < 1) <j—1> oy <1,z+1;z—k+2;—x>. (2.11)

An argument similar to the one used to prove (2.8) and (2.9) can be employed to prove the following
relation:

: 1 k-1 . 1 i 1
P B S S Fr(1i+1:3 2——). (@12
k:j<1+x>k<j—1) ‘ <1+x>%+1<g—1>2 (* IR ) 212

The proof is finished after applying (2.12), in a conjunction with the transformation formula for the
binomial coefficients, on (2.11).
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Corollary 2.4. The identity

> (—1F (k i 1> o Fy <1,i + 10—k +2; —;) = (1 ix) (2.13)

k=1

is valid for every positive integer i and real x.

Proof. The proof follows from the previous corollary after some calculations in the case j = 1,
since the elements in the first column of the Pascal matrix are equal to p; ;1 = 1.

Corollary 2.5. Fori > j > 0and x € R the following is satisfied

1 1 1 L 1 { L 1
<)+< )zpl (1,1_];1_]”;—) - (.)m (1,—y;z—y+1;—>. (2.14)
J z\J—1 x 7 x

Proof. From relation L, [x]~! = P,S,[x] ! we verify that the matrix £,[z]~! has the elements
equal to

Now we exploit the relation P, = L, [z] 1S, [z], and obtain

(-5 )i

The proof is finished after verifying the following two identities:

i N ; .
B B | M P (REF SRR ]
o 1 —k xJ z\j—1 -

¢ ik (I+x) (i (1 i vt
Z(l—k+1>x - JZ‘J j 241 y =I5t j+ 3 T 9

k=0

analogously as in Corollary 2.2.
Corollary 2.6. For integer n > 0 and x € R, we have

n 1 T 2¢ \"
ob=l_py=k( " VR (1n+lin—k+2—=)= ~1). @15
;; (—1) (k:—l o1 | Ln+1Lin + 2 . 1\ 152 (2.15)

Proof. Let E, = [1,1,...,1]T. Since S,,[z] E\, = L,,[2]PnE,, we have
_ - T
(22 —1)/(z—1) 2

(@ =1/(e=1)| =£,[z]- | 4 |,

—_

(z" —1)/(x — 1) on—1
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that is

" —1 2" "< 2 >’f—1+

z—1 1—|—mk:1 14z

n_ gk-1
1
+ —(71)"_1“ " o 1,n+1lin—k+2,— |.
x k—1 x
k=1

k—1 n

Now we apply Zk_1<1+x> __x—1(<1—|—3:) —1>,andtheproofls completed.

n n
k=0 \ k
written in the matrix mode, in this note we investigate factorizations of the matrix with (7, j) th entry

3. Conclusion. By observing the fact that the binomial theorem 2" = Z (z—1)F can be

equal to '~/ via the Pascal matrix. Later, we use these factorizations to derive numerous combinato-
rial identities. Some of them are especially interesting, like (2.2) which represents a generalization of
the Binomial theorem, as well as (2.3) which represents a generalization of the well-known identity

i1 at—1 - P
E o a* = T We leave for the future research deriving more combinatorial identities from
= x —_—

various matrix factorizations.
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