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ASYMPTOTIC BEHAVIOR AND PERIODIC NATURE
OF TWO DIFFERENCE EQUATIONS

ASYMPTOTYÇNA POVEDINKA TA PERIODYÇNA PRYRODA

DVOX RIZNYCEVYX RIVNQN|

We discuss the global asymptotic stability of the solutions of the difference equations 
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where the initial conditions  x−2 ,  x−1 ,  x0   are real numbers. 
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de poçatkovi umovy  x−2 ,  x−1 ,  x0   [ dijsnymy çyslamy. 

1.  Introduction and preliminaries.  Difference equations, although their forms look
very simple, it is extremely difficult to understand thoroughly the global behaviors of
their solutions.  One can refer to [1, 2].  The study of nonlinear rational difference equ-
ations of higher order is of paramount importance, since we still know so little about
such equations.  Cinar [3, 4] examined the global asymptotic stability of all positive so-
lutions of the rational difference equation 
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He also discussed the behavior of the solutions of the difference equation 
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In this paper, we discuss the global stability and periodic character of all solutions of
the difference equations
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2.  The difference equation  x
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Theorem 1.  Let  x−2 ,  x−1   and  x0   are positive real numbers.  Then all solu-
tions of equation (1) are 
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where  α  =  x x x− −2 1 0 . 

 Proof.  Let  α  =  x x x− −2 1 0 .  Then         
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Now assume that  m  ≥  1.  Then we have 
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This completes the proof. 

Remark.  If  α  =  x x x− −2 1 0   ≠  – 1/n ,  for all  n  ≥   1,  then formula (3) also repre-

sents solutions of equation (1) when  x−2 ,  x−1   and  x0   are real numbers. 
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Theorem 2.  Equation (1) has a period-3  solution  { , , , , , ,… ϕ ϕ ϕ ϕ ϕ1 2 3 1 2

ϕ3, }…   with  ϕ ϕ ϕ1 2 3   =  α  =  0. 

 Proof.  Let  α  =  0.  Using formula (3) it is sufficient to see that 
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therefore, for  n  =  0, 1, …  we have 

x m3   =  x0 ,      x m3 1+   =  x−1     and    x m3 2+   =  x−2 .

Now suppose that  x−2   =  ϕ1 ,  x−1   =  ϕ2 ,  x0   =  ϕ3 .  It follows that 

{ , , , , , , , }… …ϕ ϕ ϕ ϕ ϕ ϕ1 2 3 1 2 3

is a periodic solution with  ϕ ϕ ϕ1 2 3   =  α  =  0. 
This completes the proof. 
Theorem 3.  The unique equilibrium point  x   =  0  of equation (1) is nonhyper-

bolic point. 

Theorem 4.  Assume that  α   ≠   0  and  α   ≠   – 1/n .  Then every solution of equa-
tion (1) converges to zero. 

 Proof.  Let  { }xn   be arbitrary solution of equation (1).  We consider only the case

α  <  0,  the case  α  >  0  is similar and will be omitted.  From formula (3) we have 
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Here  c n( )0   is a positive constant depending on  n0 ∈ N . 

Similarly  x m3 2+   →  0  as  n  →  ∞  and  x m3 3+   →  0  as  n  →  ∞ . 
This completes the proof. 

3.  The difference equation  x
x
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Theorem 5.  Let  { }xn n = −
∞

2   be a solution of  equation (2).   Assume that  α  =

=  x x x− −2 1 0   ≠  1.  Then we have 
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 Proof.  For  m  =  0  the following results hold 
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Assume that  m  >  0.  Then if  m  is even, we have 
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This completes the proof. 

Theorem 6.  The equilibrium points  x   =   0  and   x   =   23   of equation (2)
are nonhyperbolic points. 

Theorem 7.  Every solution of  equation (2) is periodic with period 6. 
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This completes the proof. 
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Corollary 1.  Let  { }xn n = −
∞

2   be a solution of  equation  (2)  with  α   =  2.  Then
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2   is periodic with period 3. 

Corollary 2.  Let  { }xn n = −
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and  x0   are positive real numbers such that  α   =  x x x− −2 1 0   >  1.  Then the soluti-
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Corollary 3.  Let  { }xn n = −
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2   be a solution of  equation  (2)  where   x−2 ,  x−1

and  x0   are negative real numbers.  Then the solution  { }xn n = −
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semicycles of length 3. 
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