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ASYMPTOTIC BEHAVIOR AND PERIODIC NATURE
OF TWO DIFFERENCE EQUATIONS

ACUMIITOTUYHA ITOBEJIHKA TA IIEPIOJUYHA ITPUPOJA
ABOX PIBHUIIEBUX PIBHSHD

We discuss the global asymptotic stability of the solutions of the difference equations
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where the initial conditions X_,, X_, X, are real numbers.
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Jle IOYaTKOBi yMOBH X _, , X X, € ifCHUMHU YMCJIAMHU.

1
1. Introduction and preliminaries. Difference equations, although their forms look
very simple, it is extremely difficult to understand thoroughly the global behaviors of
their solutions. One can refer to [1, 2]. The study of nonlinear rational difference equ-
ations of higher order is of paramount importance, since we still know so little about
such equations. Cinar [3, 4] examined the global asymptotic stability of all positive so-
Iutions of the rational difference equation

X,_
X, = —2L p=01,....
1+x x
n”n-1

He also discussed the behavior of the solutions of the difference equation

X
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x b
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In this paper, we discuss the global stability and periodic character of all solutions of
the difference equations

Xy = —m2 p =01, (1)
1+ XpnXn—1%n-2
and
X
X = — 22— n=01,... )

-1+ X Xn—1%n-2

Xn-2

2. The difference equation x,,, = —————
1+x,x, 1x, ,

. In this section we study

the difference equation

Xy
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Theorem 1. Let x_,, x_, and x, are positive real numbers. Then all solu-

tions of equation (1) are

- 1+3)
x_z (”_ 1)/3¢’ n = L 4, 7,...,
=0 1+@Gj+Dha
I+G@j+Dha
5, = L IO EOD g s, 3)
1+3@j+2)a’
n31+@Gj-1Do
T n=23609,...,
OH 1+3jo
where 0. = X_,X_ ;X .
Proof. Let oo = x_,x_;x,. Then
Xy 1+ 0o 1+ 20

X, = Xy = and x; = x,—.
! 2 3 1430

l+a’ 1420

Now assume that m = 1. Then we have
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This completes the proof.
Remark. If oo = x_yx_jx, # —1/n, forall n = 1, then formula (3) also repre-

sents solutions of equation (1) when x_,, x_; and x, are real numbers.
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Theorem 2. Equation (1) has a period-3 solution {..., @, @5, @3, ®, ¢y,
Q3,...} with @;¢,0; = o = 0.
Proof. Let o = 0. Using formula (3) it is sufficient to see that

X, n=147..,
X, = Yx, n=2158,..,

Xq» n=2360,..,

therefore, for n = 0, 1, ... we have

Xy = Xg»  Xypy = X and xy,.5 = X5

Now suppose that x_, = @;, x_; = @,, X, = @3. Itfollows that

{0 @1, 02, 03, 01, 9y, 03,...}

is a periodic solution with @,¢,¢; = o = 0.
This completes the proof.

Theorem 3. The unique equilibrium point x = 0 of equation (1) is nonhyper-
bolic point.

Theorem 4. Assume that oo # 0 and o # —1/n. Then every solution of equa-
tion (1) converges to zero.

Proof. Let {x,} be arbitrary solution of equation (1). We consider only the case

a < 0, the case o > 0 is similar and will be omitted. From formula (3) we have

m

1+3jo _1+3jo
X = X_ II = exp” =
Sm+l 21 1+@j+ Do -2 i 1+Gj+Dha

.o 1+Gi+ha
= In = In| 1+ =
2 CXP[ ]1_!) 1+3ja T2 P z ! 1+3joc

m 1 1
= exXp— o M ey - O, o
x_2C(n0) Xp [__2‘4(1+3j0€ (JZJ]] '
J=ng

since 2

Here c(ng) is a positive constant depending on ng € N.

—> —oc0 as n — and z i is convergent
= nol+3joc J= "0 & gent

Similarly x;,,, — 0 as n — o and x3,,3 — 0 as n — oo,
This completes the proof.

*n—2
-1+ XnXn—1%n—2

3. The difference equation x,, , = . In this section we intro-

duce the following results.

Theorem 5. Letr {x,},

n=_o be a solution of equation (2). Assume that o =

= x_,x_1xy # 1. Then we have
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x_zﬁm, 1 = 1,
X_ .
Xypai = | os 0 =2 )
m
| xoB,,, 1 =3
where
1, m odd,
Bm = ]
., m even.
-1+o

Proof. For m = 0 the following results hold

X_ X
X = 2, X, = x_(-1+o) and x; = U
_1+a —1+OL
Assume that m > 0. Then if m is even, we have
) — x—ZBm—l —
—1+x, x X X
3m*3m—1"3m-2 e
—1+x.,B,,_ XoBm-1
Bm—]
XoBmr  _ Xy B, = x;
- - - 2FMm - m+1-
-1+0B,,_; -1+a
If m is odd, then
X3m-2 _ X B _
-1+ x;, x X X
3m”*3m—1"3m-2 -1
“1+x,5B,, B XoB-1
m—1
-1
x_,pB X_,(-1+a)
_ —2Fm-1 _ -2 _ _ _
= = = X, = x,5B, = X340

—1+aB,,, “1+o(-1+a)

This completes the proof.

Theorem 6. The equilibrium points x = 0 and X = %/5 of equation (2)

are nonhyperbolic points.
Theorem 7. Every solution of equation (2) is periodic with period 6.

Proof. Let {x,},’__, be asolution of equation (2) then we have

X By, I =1 X 5By, =1
| |
.X'3 N+6 = , 1 = 2’ = —, 1 = 2’ X3 ..
Bm+i)+ Bm+2 Bm m+i
| XoBys2r 1 =3 [ XBy> i =3,

This completes the proof.
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Corollary 1. Let {x,},__, be a solution of equation (2) with o. = 2. Then
{x,}7__, is periodic with period 3.

Corollary 2. Let {x,},__, be a solution of equation (2) where x_,, x_,
and x, are positive real numbers such that o = x_,x_x, > 1. Then the soluti-

on {x,}__, ispositive.
Corollary 3. Let {x,},__, be a solution of equation (2) where x_,, x_,

and x, are negative real numbers. Then the solution {x,} __, oscillates with

n=
semicycles of length 3.
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