UDC 515.1
A. Messaoud, A. Rahali (Univ. Sfax, Tunisia)

ANOTHER PROOF FOR THE CONTINUITY OF THE LIPSMAN MAPPING ЩЕ ОДНЕ ДОВЕДЕННЯ НЕПЕРЕРВНОСТІ ВІДОБРАЖЕННЯ ЛІПСМАНА

Abstract

We consider the semidirect product $G=K \ltimes V$ where K is a connected compact Lie group acting by automorphisms on a finite dimensional real vector space V equipped with an inner product \langle,$\rangle . By \widehat{G}$ we denote the unitary dual of G and by $\mathfrak{g}^{\ddagger} / G$ the space of admissible coadjoint orbits, where \mathfrak{g} is the Lie algebra of G. It was pointed out by Lipsman that the correspondence between \widehat{G} and $\mathfrak{g}^{\ddagger} / G$ is bijective. Under some assumption on G, we give another proof for the continuity of the orbit mapping (Lipsman mapping)

$$
\Theta: \mathfrak{g}^{\ddagger} / G \longrightarrow \widehat{G} .
$$

Розглядається напівпрямий добуток $G=K \ltimes V$, де K - зв’язна компактна група Лі автоморфізмів, що діють на скінченновимірному дійсному векторному просторі V із внутрішнім добутком \langle,$\rangle . Нехай \widehat{G}$ - унітарний дуал G, а $\mathfrak{g}^{\ddagger} / G$ - простір допустимих коспряжених орбіт, де \mathfrak{g} - алгебра Лі для G. Ліпсман зазначив, що відповідність між \widehat{G} та $\mathfrak{g}^{\ddagger} / G$ є бієкцією. При деяких припущеннях на G ми пропонуємо нове доведення неперервності відображення орбіт (відображення Ліпсмана)

$$
\Theta: \mathfrak{g}^{\ddagger} / G \longrightarrow \widehat{G} .
$$

1. Introduction. Let G be a second countable locally compact group and \widehat{G} the unitary dual of G, i.e., the set of all equivalence classes of irreducible unitary representations of G. It is well-known that \widehat{G} equipped with the Fell topology [6]. The description of the dual topology is a good candidate for some aspects of harmonic analysis on G (see, for example, [4, 5]). For a simply connected nilpotent Lie group and more generally for an exponential solvable Lie group $G=\exp (\mathfrak{g})$, its dual space \widehat{G} is homeomorphic to the space of coadjoint orbits \mathfrak{g}^{*} / G through the Kirillov mapping (see [8]). In the context of semidirect products $G=K \ltimes N$ of compact connected Lie group K acting on simply connected nilpotent Lie group N, then it was pointed out by Lipsman in [9], that we have again an orbit picture of the dual space of G. The unitary dual space of Euclidean motion groups is homeomorphic to the admissible coadjoint orbits [5]. This result was generalized in [4], for a class of Cartan motion groups.

In this paper, we consider the semidirect product $G=K \ltimes V$, where K is a connected compact Lie group acting by automorphisms on a finite dimensional real vector space V equipped with an inner product \langle,$\rangle . In the spirit of the orbit method due to Kirillov, R. Lipsman established a bijection$ between a class of coadjoint orbits of G and the unitary dual \widehat{G}. For every admissible linear form ψ of the Lie algebra \mathfrak{g} of G, we can construct an irreducible unitary representation π_{ψ} by holomorphic induction and according to Lipsman (see [9]), every irreducible representation of G arises in this manner. Then we get a map from the set \mathfrak{g}^{\ddagger} of the admissible linear forms onto the dual space \widehat{G} of G. Note that π_{ψ} is equivalent to $\pi_{\psi^{\prime}}$ if and only if ψ and ψ^{\prime} are on the same G-orbit, finally we obtain a bijection between the space $\mathfrak{g}^{\ddagger} / G$ of admissible coadjoint orbits and the unitary dual \widehat{G}.

Definition 1. Let G be a (real) Lie group, \mathfrak{g} its Lie algebra and

$$
\exp : \mathfrak{g} \longrightarrow G
$$

its exponential map. We say that G is exponential if $\exp (\mathfrak{g})=G$.

Now, we give our main result in this paper, which is another proof for the continuity of the orbit mapping (see [11]):

Theorem 1. We assume that G is exponential. Then the orbit mapping

$$
\Theta: \mathfrak{g}^{\ddagger} / G \longrightarrow \widehat{G}
$$

is continuous.
This paper is organized as follows. Section 2 is devoted to the description of the unitary dual \widehat{G} of G. Section 3 deals with the space of admissible coadjoint orbits $\mathfrak{g}^{\ddagger} / G$ of G. Theorem 1 is proved in Section 4.
2. Dual spaces of semidirect product. Throughout this paper, K will denote a connected compact Lie group acting by automorphisms on a finite dimensional vector space $(V,\langle\rangle$,$) . We write$ $k . v$ and $A . v$ (resp., $k . \ell$ and $A . \ell$) for the result of applying elements $k \in K$ and $A \in \mathfrak{k}:=\operatorname{Lie}(K)$ to $v \in V$ (resp., to $\ell \in V^{*}$).

Now, one can form the semidirect product $G:=K \ltimes V$ which so-called generalized motion groups. As a set $G=K \times V$ and the multiplication in this group is given by

$$
(k, v)(h, u)=(k h, v+k . u) \quad \forall(k, v), \quad(h, u) \in G .
$$

The Lie algebra of G is $\mathfrak{g}=\mathfrak{k} \oplus V$ (as a vector space) and the Lie algebra structure is given by the bracket

$$
[(A, a),(B, b)]=([A, B], A \cdot b-B \cdot a) \quad \forall(A, a), \quad(B, b) \in \mathfrak{g} .
$$

Under the identification of the dual \mathfrak{g}^{*} of \mathfrak{g} with $\mathfrak{k}^{*} \oplus V^{*}$, we can express the duality between \mathfrak{g} and \mathfrak{g}^{*} as $F(A, a)=f(A)+\ell(a)$ for all $F=(f, \ell) \in \mathfrak{g}^{*}$ and $(A, a) \in \mathfrak{g}$. The adjoint representation Ad_{G} and coadjoint representation Ad_{G}^{*} of G are given, respectively, by the following relations:

$$
\begin{gathered}
\operatorname{Ad}_{G}(k, v)(A, a)=\left(\operatorname{Ad}_{K}(k) A, k \cdot a-\operatorname{Ad}_{K}(k) A \cdot v\right) \quad \forall(k, v) \in G, \quad(A, a) \in \mathfrak{g}, \\
\operatorname{Ad}_{G}^{*}(k, v)(f, \ell)=\left(\operatorname{Ad}_{K}^{*}(k) f+k \cdot \ell \odot v, k \cdot \ell\right) \quad \forall(k, v) \in G, \quad(f, \ell) \in \mathfrak{g}^{*},
\end{gathered}
$$

where $\ell \odot v$ is the element of \mathfrak{k}^{*} defined by

$$
\ell \odot v(A)=\ell(A . v)=-(A . \ell)(v) \quad \forall A \in \mathfrak{k}, \quad \ell \in V^{*}, \quad v \in V
$$

Note that the map $\odot: V^{*} \times V \longrightarrow \mathfrak{k}^{*}$ defined by $(\ell \odot v)(A)=\ell(A . v), v \in V, A \in \mathfrak{k}$ satisfies a fundamental equivariance property

$$
\operatorname{Ad}_{K}^{*}(k)(\ell \odot v)=(k . \ell) \odot(k . v), \quad k \in K
$$

Therefore, the coadjoint orbit of G passing through $(f, \ell) \in \mathfrak{g}^{*}$ is given by

$$
\mathcal{O}_{(f, \ell)}^{G}=\left\{\left(A d_{K}^{*}(k) f+k \cdot \ell \odot v, k \cdot \ell\right), k \in K, v \in V\right\} .
$$

For $\ell \in V^{*}$, we define $K_{\ell}:=\{k \in K ; k . \ell=\ell\}$ the isotropy subgroup of ℓ in K and the Lie algebra of K_{ℓ} is given by the vector space $\mathfrak{k}_{\ell}=\{A \in \mathfrak{k} ; A . \ell=0\}$. Let $\imath_{\ell}: \mathfrak{k}_{\ell} \hookrightarrow \mathfrak{k}$ be the injection map, then $\imath_{\ell}^{*}: \mathfrak{k}^{*} \longrightarrow \mathfrak{k}_{\ell}^{*}$ is the projection map and we have

$$
\begin{equation*}
\mathfrak{k}_{\ell}^{\circ}=\operatorname{Ker}\left(\imath_{\ell}^{*}\right), \tag{1}
\end{equation*}
$$

where $\mathfrak{k}_{\ell}^{\circ}$ is the annihilator of \mathfrak{k}_{ℓ}. If we define the linear map $h_{\ell}: \mathfrak{k} \longrightarrow V^{*}$ by

$$
h_{\ell}(A):=-A \cdot \ell \quad \forall A \in \mathfrak{k},
$$

then we have $\mathfrak{k}_{\ell}=\operatorname{Ker}\left(h_{\ell}\right)$. The dual $h_{\ell}^{*}: V \longrightarrow \mathfrak{k}^{*}$ of h_{ℓ} is given by the relation $h_{\ell}^{*}(v)(A)=$ $=h_{\ell}(A)(v)=-(A \cdot \ell)(v)$, and so $h_{\ell}^{*}(v)=\ell \odot v \forall \ell \in V^{*}, \forall v \in V$ (for more details see [3]).

The following is a useful lemma from [3], giving a characterization of the annihilator $\mathfrak{k}_{\ell}^{\circ}$ in terms of the linear map h_{ℓ}.

Lemma 1. Using the previous notations, then we have the equality

$$
\mathfrak{k}_{\ell}^{\circ}=\operatorname{Im}\left(h_{\ell}^{*}\right)
$$

Here we recall briefly the description of the unitary dual of G via Mackey's little group theory (see [10]). For every non-zero linear form ℓ on V, we denote by χ_{ℓ} the unitary character of the vector Lie group V given by $\chi_{\ell}=e^{i \ell}$. Let ρ be an irreducible unitary representation of K_{ℓ} on some Hilbert space \mathcal{H}_{ρ}. The map

$$
\rho \otimes \chi_{\ell}:(k, v) \longmapsto e^{i \ell(v)} \rho(k)
$$

is a representation of the Lie group $K_{\ell} \ltimes V$ such that one induce up so as to get a unitary representation of G. We denote by $\mathcal{H}_{(\rho, \ell)}:=L^{2}\left(K, \mathcal{H}_{\rho}\right)^{\rho}$ the subspace of $L^{2}\left(K, \mathcal{H}_{\rho}\right)$ consisting of all the maps ξ which satisfy the covariance condition

$$
\xi(k h)=\rho\left(h^{-1}\right) \xi(k) \quad \forall k \in K, \quad h \in K_{\ell} .
$$

The induced representation

$$
\pi_{(\rho, \ell)}:=\operatorname{Ind}_{K_{\ell} \ltimes V}^{K \ltimes V}\left(\rho \otimes \chi_{\ell}\right)
$$

is defined on $\mathcal{H}_{(\rho, \ell)}$ by

$$
\pi_{(\rho, \ell)}(k, v) \xi(h)=e^{i \ell\left(h^{-1} \cdot v\right)} \xi\left(k^{-1} h\right)
$$

where $(k, v) \in G, h \in K$ and $\xi \in \mathcal{H}_{(\rho, \ell)}$. By Mackey's theory we can say that the induced representation $\pi_{(\rho, \ell)}$ is irreducible and every infinite dimensional irreducible unitary representation of G is equivalent to one of $\pi_{(\rho, \ell)}$. Moreover, tow representations $\pi_{(\rho, \ell)}$ and $\pi_{\left(\rho^{\prime}, \ell^{\prime}\right)}$ are equivalent if and only if ℓ and ℓ^{\prime} are contained in the same K-orbit and the representation ρ and ρ^{\prime} are equivalent under the identification of the conjugate subgroups K_{ℓ} and $K_{\ell^{\prime}}$. All irreducible representations of G which are not trivial on the normal subgroup V, are obtained by this manner. On the other hand, we denote also by τ the extension of every unitary irreducible representation τ of K on G, which simply defined by $\tau(k, v):=\tau(k)$ for $k \in K$ and $v \in V$. Let Ω be a K-orbit in V^{*}. We fix $\ell \in \Omega$ and we define the subset $\widehat{G}(\Omega)$ of \widehat{G} by

$$
\widehat{G}(\Omega)=\left\{\operatorname{Ind}_{K_{\ell} \ltimes V}^{K \ltimes V}\left(\rho \otimes \chi_{\ell}\right) ; \rho \in \widehat{K_{\ell}}\right\} .
$$

Then we conclude that

$$
\widehat{G}=\widehat{K} \bigcup\left(\bigcup_{\Omega \in \Lambda} \widehat{G}(\Omega)\right)
$$

where Λ is the set of the nontrivial orbits in V^{*} / K.
In the remainder of this paper, we shall assume that G is exponential, i.e., K_{ℓ} is connected for all $\ell \in V^{*}$. Let ρ_{μ} be an irreducible representation of K_{ℓ} with highest weight μ. For simplicity, we shall write $\pi_{(\mu, \ell)}$ instead of $\pi_{\left(\rho_{\mu}, \ell\right)}$ and $\mathcal{H}_{(\mu, \ell)}$ instead of $\mathcal{H}_{\left(\rho_{\mu}, \ell\right)}$.

We close this section by presenting two results which are being used in the description of the dual topology of G. These are required for our proof of Theorem 1.

Let N be an Abelian group, and assume that the compact Lie group K acts on the left on N by automorphisms. As sets, the semidirect product $K \ltimes N$ is the Cartesian product $K \times N$ and the group multiplication is given by

$$
\left(k_{1}, x_{1}\right) \cdot\left(k_{2}, x_{2}\right)=\left(k_{1} k_{2}, x_{1}+k_{1} x_{2}\right)
$$

Let χ be a unitary character of N, and let K_{χ} be the stabilizer of χ under the action of K on \widehat{N} defined by

$$
(k \cdot \chi)(x)=\chi\left(k^{-1} x\right)
$$

If ρ is an element of $\widehat{K_{\chi}}$, then the triple $\left(\chi,\left(K_{\chi}, \rho\right)\right)$ is called a cataloguing triple. From the notations of [2], we denote by $\pi\left(\chi, K_{\chi}, \rho\right)$ the induced representation $\operatorname{Ind}_{K_{\chi} \ltimes N}^{K \ltimes N}(\rho \otimes \chi)$. Referring to [2, p. 187], we have the following proposition.

Proposition 1. The mapping $\left(\chi,\left(K_{\chi}, \rho\right)\right) \longrightarrow \pi\left(\chi, K_{\chi}, \rho\right)$ is onto $\widehat{K \ltimes N}$.
We denote by $\mathcal{A}(K)$ the set of all pairs $\left(K^{\prime}, \rho^{\prime}\right)$, where K^{\prime} is a closed subgroup of K and ρ^{\prime} is an irreducible representation of K^{\prime}. We equip $\mathcal{A}(K)$ with the Fell topology (see [6]). Therefore, every element in $\widehat{K \ltimes N}$ can be catalogued by elements in the topological space $\widehat{N} \times \mathcal{A}(K)$. Larry Baggett has given an abstract description of the topology of the dual space of a semidirect product of a compact group with an Abelian group in terms of the Mackey parameters of the dual space (see [2], Theorem 6.2-A). The following result provides a precise and neat description of the topology of $\widehat{K \ltimes N}$.

Theorem 2. Let Y be a subset of $\widehat{K \ltimes N}$ and π an element of $\widehat{K \ltimes N}$. Then π is weakly contained in Y if and only if there exist: a cataloguing triple $\left(\chi,\left(K_{\chi}, \rho\right)\right)$ for π, an element $\left(K^{\prime}, \rho^{\prime}\right)$ of $\mathcal{A}(K)$, and a net $\left\{\left(\chi_{n},\left(K_{\chi_{n}}, \rho_{n}\right)\right)\right\}$ of cataloguing triples such that:
(i) for each n, the irreducible unitary representation $\pi\left(\chi_{n}, K_{\chi_{n}}, \rho_{n}\right)$ of $K \ltimes N$ is an element of Y;
(ii) the net $\left\{\left(\chi_{n},\left(K_{\chi_{n}}, \rho_{n}\right)\right)\right\}$ converges to $\left(\chi,\left(K^{\prime}, \rho^{\prime}\right)\right)$;
(iii) K_{χ} contains K^{\prime}, and the induced representation $\operatorname{Ind}_{K^{\prime}}^{K_{\chi}}\left(\rho^{\prime}\right)$ contains ρ.
3. Admissible coadjoint orbits of semidirect product. We keep the notations of Section 2. Fix a non-zero linear form $\ell \in V^{*}$, and we consider an irreducible representation ρ_{μ} of K_{ℓ} with highest weight μ. Then the stabilizer G_{ψ} of $\psi=(\mu, \ell)$ in G is given by

$$
\begin{gathered}
G_{\psi}=\left\{(k, v) \in G ;\left(\operatorname{Ad}_{K}^{*}(k) \mu+k \cdot \ell \odot v, k \cdot \ell\right)=(\mu, \ell)\right\}= \\
=\left\{(k, v) \in G ; k \in K_{\ell}, \operatorname{Ad}_{K}^{*}(k) \mu+\ell \odot v=\mu\right\}= \\
=\left\{(k, v) \in G ; k \in K_{\ell}, \operatorname{Ad}_{K}^{*}(k) \mu=\mu\right\}
\end{gathered}
$$

since $\imath_{\ell}^{*}(\ell \odot v)=0$ (see Lemma 1 and the equality (1)). Thus, we have $G_{\psi}=K_{\psi} \ltimes V_{\psi}$, then ψ is aligned (see [9]). A linear form $\psi \in \mathfrak{g}^{*}$ is called admissible if there exists a unitary character χ of the identity component of G_{ψ} such that $d \chi=i \psi_{\left.\right|_{\mathfrak{g}_{\psi}}}$. According to Lipsman (see [9]), the representation of G obtained by holomorphic induction from (μ, ℓ) is equivalent to the representation $\pi_{(\mu, \ell)}$. Let τ_{λ} be an irreducible representation of K with highest weight λ, then the representation of G obtained by
holomorphic induction from $(\lambda, 0)$ is equivalent to τ_{λ}. The coadjoint orbit of G through $(\lambda, 0) \in \mathfrak{g}^{*}$ is denoted by $\mathcal{O}_{\lambda}^{G}$. It is clear that $\mathcal{O}_{\lambda}^{G}$ is an admissible coadjoint orbit of G. We denote by $\mathfrak{g}^{\ddagger} \subset \mathfrak{g}^{*}$ the set of all admissible linear forms on \mathfrak{g}. The quotient space $\mathfrak{g}^{\ddagger} / G$ is called the space of admissible coadjoint orbits of G. Moreover, one can check that $\mathfrak{g}^{\ddagger} / G$ is the union of the set of all orbits $\mathcal{O}_{(\mu, \ell)}^{G}$ and the set of all orbits $\mathcal{O}_{\lambda}^{G}$.

We conclude this section by recalling needed results. Let L be a closed subgroup of K. By T_{K} and T_{L} be maximal tori, respectively, in K and L such that $T_{L} \subset T_{K}$. Their corresponding Lie algebras are denoted by $\mathfrak{t}_{\mathfrak{k}}$ and $\mathfrak{t}_{\mathfrak{l}}$. We denote by W_{K} and W_{L} the Weyl groups of K and L associated, respectively, to the tori T_{K} and T_{L}. Notice that every element $\lambda \in P_{K}$ takes pure imaginary values on $\mathfrak{t}_{\mathfrak{k}}$, where P_{K} is the integral weight lattice of T_{K}. Hence such an element $\lambda \in P_{K}$ can be considered as an element of $\left(i \mathfrak{t}_{\mathfrak{k}}\right)^{*}$. Let C_{K}^{+}be a positive Weyl chamber in $\left(i \mathfrak{t}_{\mathfrak{k}}\right)^{*}$, and we define the set P_{K}^{+}of dominant integral weights of T_{K} by $P_{K}^{+}:=P_{K} \cap C_{K}^{+}$. For $\lambda \in P_{K}^{+}$, denote by $\mathcal{O}_{\lambda}^{K}$ the K-coadjoint orbit passing through the vector $-i \lambda$. It was proved by Kostant in [7], that the projection of $\mathcal{O}_{\lambda}^{K}$ on $\mathfrak{t}_{\mathfrak{k}}^{*}$ is a convex polytope with vertices $-i(w \cdot \lambda)$ for $w \in W_{K}$, and that is the convex hull of $-i\left(W_{K} \cdot \lambda\right)$. For the same manner, we fix a positive Weyl chamber C_{L}^{+}in $\mathfrak{t}_{\mathrm{l}}^{*}$ and we define the set P_{L}^{+}of dominant integral weights of T_{L}.

Also we denote by $\imath_{\mathfrak{l}}^{*}$ the \mathbb{C}-linear extension of both the natural projection of \mathfrak{k}^{*} onto \mathfrak{l}^{*} and the natural projection of $\mathfrak{t}_{\mathfrak{k}}^{*}$ onto $\mathfrak{t}_{\mathfrak{l}}^{*}$. Consider tow irreducible representations $\tau_{\lambda} \in \widehat{K}$ and $\rho_{\mu} \in \widehat{L}$ with respective highest weights $\lambda \in P_{K}^{+}$and $\mu \in P_{L}^{+}$. We have the following result.

Lemma 2. If $\mu=i_{\mathfrak{l}}^{*}(s . \lambda)$ with $s \in W_{K}$, then τ_{λ} occurs in the induced representation $\operatorname{Ind}_{L}^{K}\left(\rho_{\mu}\right)$. We refer to [1], for the proof of this lemma.
4. Main results. We shall freely use the notations of the previous sections.

Remark 1. We have the following convergence:

$$
\begin{gathered}
\ell_{m} \longrightarrow \ell \\
K_{\ell_{m}} \subseteq K_{\ell}
\end{gathered}
$$

To study the convergence in the quotient space $\mathfrak{g}^{\ddagger} / G$, we need to the following result (see [8, p. 135] for the proof).

Lemma 3. Let G be a unimodular Lie group with Lie algebra \mathfrak{g} and let \mathfrak{g}^{*} be the vector dual space of \mathfrak{g}. We denote \mathfrak{g}^{*} / G the space of coadjoint orbits and by $p_{G}: \mathfrak{g}^{*} \longrightarrow \mathfrak{g}^{*} / G$ the canonical projection. We equip this space with the quotient topology, i.e., a subset V in \mathfrak{g}^{*} / G is open if and only if $p_{G}^{-1}(V)$ is open in \mathfrak{g}^{*}. Therefore, a sequence $\left(\mathcal{O}_{n}^{G}\right)_{n}$ of elements in \mathfrak{g}^{*} / G converges to the orbit \mathcal{O}^{G} in \mathfrak{g}^{*} / G if and only if for any $l \in \mathcal{O}^{G}$, there exist $l_{n} \in \mathcal{O}_{n}^{G}, n \in \mathbb{N}$, such that $l=\lim _{n \rightarrow+\infty} l_{n}$.

Now, we are in position to prove the following propositions.
Proposition 2. Let $\left(\mathcal{O}_{\left(\mu^{m}, \ell_{m}\right)}^{G}\right)_{m}$ be a sequence in $\mathfrak{g}^{\ddagger} / G$. If $\left(\mathcal{O}_{\left(\mu^{m}, \ell_{m}\right)}^{G}\right)_{m}$ converges to $\mathcal{O}_{(\mu, \ell)}^{G}$ in $\mathfrak{g}^{\ddagger} / G$, then we have: $\left(\ell_{m}\right)_{m}$ converges to ℓ and for m large enough, $\rho_{\mu} \in \operatorname{Ind}_{K_{\ell}}^{K_{\ell}}\left(\rho_{\mu^{m}}\right)$.

Proof. We assume that the sequence of admissible coadjoint orbits $\left(\mathcal{O}_{\left(\mu^{m}, \ell_{m}\right)}^{G}\right)_{m}$ converges to $\mathcal{O}_{(\mu, \ell)}^{G}$ in $\mathfrak{g}^{\ddagger} / G$. By referring to [3], we show that the coadjoint orbit $\mathcal{O}_{(\mu, \ell)}^{G}$ is always obtained by symplectic induction from the coadjoint orbit $M=\mathcal{O}_{(\mu, \ell)}^{H}$ of $H:=K_{\ell} \ltimes V$ passing through $(\mu, \ell) \in \mathfrak{k}_{\ell}^{*} \oplus V^{*}\left(\mathfrak{k}_{\ell} \ltimes V:=\operatorname{Lie}(H)\right)$, i.e.,

$$
\begin{equation*}
\mathcal{O}_{(\mu, \ell)}^{G}=M_{\mathrm{ind}}:=J_{\widetilde{M}}^{-1}(0) / H \tag{2}
\end{equation*}
$$

where $J_{\widetilde{M}}: \widetilde{M}=M \times T^{*} G \longrightarrow \mathfrak{k}_{\ell}^{*} \ltimes V^{*}$ is the momentum map of \widetilde{M} and the zero level set $J_{\widetilde{M}}^{-1}(0)$ is given by

$$
J_{\widetilde{M}}^{-1}(0)=\left\{\left(\left(\operatorname{Ad}_{K}^{*}(k) \mu, \ell\right), g,\left(\operatorname{Ad}_{K}^{*}(k) \mu+\ell \odot v, \ell\right)\right), k \in K_{\ell}, g \in G, v \in V\right\}
$$

Let φ_{M} be the action of H on M, hence H acts on $\widetilde{M}=M \times T^{*} G$ by $\varphi_{\widetilde{M}}$ as follows:

$$
\begin{equation*}
\varphi_{\widetilde{M}}(h)(\alpha, g, f)=\left(\varphi_{M}(h)(\alpha), g h^{-1}, \operatorname{Ad}_{H}^{*}(h) f\right) \tag{3}
\end{equation*}
$$

for all $h \in H,(\alpha, g, f) \in M \times T^{*} G$. By identifying \mathfrak{g}^{*} with the left-invariant 1-form on G. Then we can write $T^{*} G \cong G \times \mathfrak{g}^{*}$.

Using Lemma 3 and by combining (2) with (3), then there exist sequences $k_{m}, h_{m} \in K_{\ell_{m}}$, $v_{m}, w_{m} \in V$, and $g_{m} \in G$ such that the sequence $\left(\phi_{m}\right)_{m}$ defined by

$$
\begin{gathered}
\phi_{m}=\varphi_{\widetilde{M}}\left(k_{m}, v_{m}\right)\left(\left(\operatorname{Ad}_{K}^{*}\left(h_{m}\right) \mu^{m}, \ell_{m}\right), g_{m},\left(\operatorname{Ad}_{K}^{*}\left(h_{m}\right) \mu^{m}+\ell_{m} \odot w_{m}, \ell_{m}\right)\right)= \\
=\left(\operatorname{Ad}_{K}^{*}\left(k_{m} h_{m}\right) \mu^{m}+\imath_{\ell_{m}}^{*}\left(\ell_{m} \odot v_{m}\right), \ell_{m}\right), g_{m}\left(k_{m}, v_{m}\right)^{-1} \\
\left.\left(\operatorname{Ad}_{K}^{*}\left(k_{m} h_{m}\right) \mu^{m}+\operatorname{Ad}_{K}^{*}\left(k_{m}\right)\left(\ell_{m} \odot w_{m}\right)+\ell_{m} \odot v_{m}, \ell_{m}\right)\right)
\end{gathered}
$$

converges to $\left((\mu, \ell), e_{G},(\mu, \ell)\right)$. It follows that

$$
\ell_{m} \longrightarrow \ell
$$

and

$$
\begin{equation*}
\operatorname{Ad}_{K}^{*}\left(k_{m} h_{m}\right) \mu^{m}+\imath_{\ell_{m}}^{*}\left(\ell_{m} \odot v_{m}\right) \longrightarrow \mu \tag{4}
\end{equation*}
$$

as $n \longrightarrow+\infty$. By compactness of K we may assume that $\left(k_{m} h_{m}\right)_{m}$ converges to $p \in K_{\ell_{n}} \subset K_{\ell}$. By using the fact that $\imath_{\ell_{m}}^{*}\left(\ell_{m} \odot v_{m}\right)=0$, we, from (4), obtain that

$$
\mu^{m}=A d^{*}\left(p^{-1}\right) \mu
$$

for m large enough. Furthermore, we known that there exists an element $s \in W_{K_{\ell}}$ such that $\operatorname{Ad}^{*}\left(p^{-1}\right) \mu=s . \mu$. Hence $\mu^{m}=s . \mu$ for m large enough and we conclude by Lemma 2 that for m large enough, $\rho_{\mu} \in \operatorname{Ind}_{K_{\ell_{m}}}^{K_{\ell}}\left(\rho_{\mu^{m}}\right)$.

Proposition 2 is proved.
Proposition 3. If the sequence $\left(\mathcal{O}_{\left(\mu^{m}, \ell_{m}\right)}^{G}\right)_{m}$ converges to $\mathcal{O}_{\lambda}^{G}$ in $\mathfrak{g}^{\ddagger} / G$, then we have: $\left(\ell_{m}\right)_{m}$ converges to 0 and for m large enough, $\tau_{\lambda} \in \operatorname{Ind}_{K_{\ell_{m}}}^{K}\left(\rho_{\mu^{m}}\right)$.

Proof. We use the notations and proceedings of the proof of the last proposition. Let us assume that the sequence $\left(\mathcal{O}_{\left(\mu^{m}, \ell_{m}\right)}^{G}\right)_{m}$ converges to $\mathcal{O}_{\lambda}^{G}$. Then there exist sequences $k_{m}, h_{m} \in K_{\ell_{m}}$, $v_{m}, w_{m} \in V$, and $g_{m} \in G$ such that the sequence $\left(\Psi_{m}\right)_{m}$ defined by

$$
\begin{gathered}
\Psi_{m}=\varphi_{\widetilde{M}}\left(k_{m}, v_{m}\right)\left(\left(\operatorname{Ad}_{K}^{*}\left(h_{m}\right) \mu^{m}, \ell_{m}\right), g_{m},\left(\operatorname{Ad}_{K}^{*}\left(h_{m}\right) \mu^{m}+\ell_{m} \odot w_{m}, \ell_{m}\right)\right)= \\
=\left(\operatorname{Ad}_{K}^{*}\left(k_{m} h_{m}\right) \mu^{m}+\imath_{\ell_{m}}^{*}\left(\ell_{m} \odot v_{m}\right), \ell_{m}\right), g_{m}\left(k_{m}, v_{m}\right)^{-1} \\
\left.\left(\operatorname{Ad}_{K}^{*}\left(k_{m} h_{m}\right) \mu^{m}+\operatorname{Ad}_{K}^{*}\left(k_{m}\right)\left(\ell_{m} \odot w_{m}\right)+\ell_{m} \odot v_{m}, \ell_{m}\right)\right)
\end{gathered}
$$

converges to $\left((\lambda, 0), e_{G},(\lambda, 0)\right)$. From the above facts, we conclude the following convergence:

$$
\begin{gather*}
\ell_{m} \longrightarrow 0 \tag{5}\\
\operatorname{Ad}^{*}\left(k_{m} h_{m}\right) \mu^{m} \longrightarrow \lambda \tag{6}
\end{gather*}
$$

By assumption that the sequence $\left(k_{m} h_{m}\right)_{m}$ converges to $p \in K_{\ell_{m}}$, we obtain, from (6), that $\mu^{m}=$ $=\operatorname{Ad}^{*}\left(p^{-1}\right) \lambda$ for m large enough. Hence there exists $w \in W_{K}$, such that $\mu^{m}=w . \lambda$ for m large enough. Lemma 2 allows us to derive that $\tau_{\lambda} \in \operatorname{Ind}_{K_{\ell_{m}}}^{K}\left(\rho_{\mu^{m}}\right)$ for large m.

Proposition 3 is proved.
Proposition 4. If $\left(\mathcal{O}_{\lambda^{m}}^{G}\right)_{m}$ converges to $\mathcal{O}_{\lambda}^{G}$ in $\mathfrak{g}^{\ddagger} / G$, then $\lambda^{m}=\lambda$ for large m.
Proof. Suppose that $\left(\mathcal{O}_{\lambda^{m}}^{G}\right)_{m}$ converges to $\mathcal{O}_{\lambda}^{G}$ in $\mathfrak{g}^{\ddagger} / G$, then there exists $\left(k_{m}\right)_{m} \subset K$ such that

$$
\operatorname{Ad}_{K}^{*}\left(k_{m}\right) \lambda^{m} \longrightarrow \lambda \quad \text { as } \quad m \longrightarrow+\infty .
$$

By compactness of K we may assume that $\left(k_{m}\right)_{m}$ converges to $k \in K$. Then we obtain $\lambda^{m}=$ $=\operatorname{Ad}_{K}^{*}\left(k^{-1}\right) \lambda$ for m large enough. Hence there exists $w \in W_{K}$ such that $\operatorname{Ad}_{K}^{*}\left(k^{-1}\right)=w \cdot \lambda$ for m large enough. It follows that $\lambda^{m}=w \cdot \lambda$ for m large enough. Since the weights λ^{m} and λ are contained in the set $i C_{K}^{+}$and since each W_{K}-orbit in \mathfrak{k}^{*} intersects the closure $\overline{i C_{K}^{+}}$in exactly one point, it follows that $\lambda^{m}=\lambda$ for m large enough.

Proposition 4 is proved.
Combining the above Propositions 2, 3 and 4 with Baggett's theorem (Theorem 2), we obtain our result (Theorem 1).

References

1. D. Arnal, M. Ben Ammar, M. Selmi, Le problème de la réduction à un sous-groupe dans la quantification par déformation, Ann. Fac. Sci. Toulouse, 12, 7-27 (1991).
2. W. Baggett, A description of the topology on the dual spaces of certain locally compact groups, Trans. Amer. Math. Soc., 132, 175-215 (1968).
3. P. Baguis, Semidirect product and the Pukanszky condition, J. Geom. and Phys., 25, $245-270$ (1998).
4. M. Ben Halima, A. Rahali, On the dual topology of a class of Cartan motion groups, J. Lie Theory, 22, 491-503 (2012).
5. M. Elloumi, J. Ludwig, Dual topology of the motion groups $S O(n) \ltimes \mathbb{R}^{n}$, Forum Math., 22, 397-410 (2008).
6. J. M. G. Fell, Weak containment and induced representations of groups (II), Trans. Amer. Math. Soc., 110, $424-447$ (1964).
7. B. Kostant, On convexity, the Weyl group and the Iwasawa decomposition, Ann. Sci. Ecole Norm. Supér, 6, 413-455 (1973).
8. H. Leptin, J. Ludwig, Unitary representation theory of exponential Lie groups, de Gruyter, Berlin (1994).
9. R. L. Lipsman, Orbit theory and harmonic analysis on Lie groups with co-compact nilradical, J. Math. Pures et Appl., 59, 337 - 374 (1980).
10. A. Rahali, Dual topology of generalized motion groups, Math. Rep., 20(70), 233-243 (2018).
11. A. Messaoud, A. Rahali, On the continuity of the Lipsman mapping of semidirect products, Rev. Roum. Math. Pures et Appl., 3(63), 249-258 (2018).
