DOI: 10.37863/umzh.v72i7.548

UDC 515.1

A. Messaoud, A. Rahali (Univ. Sfax, Tunisia)

ANOTHER PROOF FOR THE CONTINUITY OF THE LIPSMAN MAPPING ЩЕ ОДНЕ ДОВЕДЕННЯ НЕПЕРЕРВНОСТІ ВІДОБРАЖЕННЯ ЛІПСМАНА

We consider the semidirect product $G = K \ltimes V$ where K is a connected compact Lie group acting by automorphisms on a finite dimensional real vector space V equipped with an inner product \langle , \rangle . By \hat{G} we denote the unitary dual of G and by \mathfrak{g}^{\dagger}/G the space of admissible coadjoint orbits, where \mathfrak{g} is the Lie algebra of G. It was pointed out by Lipsman that the correspondence between \hat{G} and \mathfrak{g}^{\dagger}/G is bijective. Under some assumption on G, we give another proof for the continuity of the orbit mapping (Lipsman mapping)

$$\Theta: \mathfrak{g}^{\ddagger}/G \longrightarrow \widehat{G}.$$

Розглядається напівпрямий добуток $G = K \ltimes V$, де K — зв'язна компактна група Лі автоморфізмів, що діють на скінченновимірному дійсному векторному просторі V із внутрішнім добутком \langle, \rangle . Нехай \hat{G} — унітарний дуал G, а \mathfrak{g}^{\dagger}/G — простір допустимих коспряжених орбіт, де \mathfrak{g} — алгебра Лі для G. Ліпсман зазначив, що відповідність між \hat{G} та \mathfrak{g}^{\dagger}/G є бієкцією. При деяких припущеннях на G ми пропонуємо нове доведення неперервності відображення орбіт (відображення Ліпсмана)

 $\Theta:\mathfrak{g}^{\ddagger}/G\longrightarrow \widehat{G}.$

1. Introduction. Let G be a second countable locally compact group and \hat{G} the unitary dual of G, i.e., the set of all equivalence classes of irreducible unitary representations of G. It is well-known that \hat{G} equipped with the Fell topology [6]. The description of the dual topology is a good candidate for some aspects of harmonic analysis on G (see, for example, [4, 5]). For a simply connected nilpotent Lie group and more generally for an exponential solvable Lie group $G = \exp(\mathfrak{g})$, its dual space \hat{G} is homeomorphic to the space of coadjoint orbits \mathfrak{g}^*/G through the Kirillov mapping (see [8]). In the context of semidirect products $G = K \ltimes N$ of compact connected Lie group K acting on simply connected nilpotent Lie group N, then it was pointed out by Lipsman in [9], that we have again an orbit picture of the dual space of G. The unitary dual space of Euclidean motion groups is homeomorphic to the admissible coadjoint orbits [5]. This result was generalized in [4], for a class of Cartan motion groups.

In this paper, we consider the semidirect product $G = K \ltimes V$, where K is a connected compact Lie group acting by automorphisms on a finite dimensional real vector space V equipped with an inner product \langle, \rangle . In the spirit of the orbit method due to Kirillov, R. Lipsman established a bijection between a class of coadjoint orbits of G and the unitary dual \hat{G} . For every admissible linear form ψ of the Lie algebra \mathfrak{g} of G, we can construct an irreducible unitary representation π_{ψ} by holomorphic induction and according to Lipsman (see [9]), every irreducible representation of G arises in this manner. Then we get a map from the set \mathfrak{g}^{\ddagger} of the admissible linear forms onto the dual space \hat{G} of G. Note that π_{ψ} is equivalent to $\pi_{\psi'}$ if and only if ψ and ψ' are on the same G-orbit, finally we obtain a bijection between the space $\mathfrak{g}^{\ddagger}/G$ of admissible coadjoint orbits and the unitary dual \hat{G} .

Definition 1. Let G be a (real) Lie group, \mathfrak{g} its Lie algebra and

$$\exp:\mathfrak{g}\longrightarrow G$$

its exponential map. We say that G is exponential if $\exp(\mathfrak{g}) = G$.

© A. MESSAOUD, A. RAHALI, 2020

ISSN 1027-3190. Укр. мат. журн., 2020, т. 72, № 7

Now, we give our main result in this paper, which is another proof for the continuity of the orbit mapping (see [11]):

Theorem 1. We assume that G is exponential. Then the orbit mapping

$$\Theta: \mathfrak{g}^{\ddagger}/G \longrightarrow \widehat{G}$$

is continuous.

This paper is organized as follows. Section 2 is devoted to the description of the unitary dual \hat{G} of G. Section 3 deals with the space of admissible coadjoint orbits $\mathfrak{g}^{\ddagger}/G$ of G. Theorem 1 is proved in Section 4.

2. Dual spaces of semidirect product. Throughout this paper, K will denote a connected compact Lie group acting by automorphisms on a finite dimensional vector space (V, \langle, \rangle) . We write k.v and A.v (resp., $k.\ell$ and $A.\ell$) for the result of applying elements $k \in K$ and $A \in \mathfrak{k} := \text{Lie}(K)$ to $v \in V$ (resp., to $\ell \in V^*$).

Now, one can form the semidirect product $G := K \ltimes V$ which so-called generalized motion groups. As a set $G = K \times V$ and the multiplication in this group is given by

$$(k,v)(h,u) = (kh,v+k.u) \quad \forall (k,v), \quad (h,u) \in G$$

The Lie algebra of G is $\mathfrak{g} = \mathfrak{k} \oplus V$ (as a vector space) and the Lie algebra structure is given by the bracket

$$[(A, a), (B, b)] = ([A, B], A.b - B.a) \quad \forall (A, a), \quad (B, b) \in \mathfrak{g}.$$

Under the identification of the dual \mathfrak{g}^* of \mathfrak{g} with $\mathfrak{k}^* \oplus V^*$, we can express the duality between \mathfrak{g} and \mathfrak{g}^* as $F(A, a) = f(A) + \ell(a)$ for all $F = (f, \ell) \in \mathfrak{g}^*$ and $(A, a) \in \mathfrak{g}$. The adjoint representation Ad_G^* and coadjoint representation Ad_G^* of G are given, respectively, by the following relations:

$$\begin{aligned} \operatorname{Ad}_{G}(k,v)(A,a) &= (\operatorname{Ad}_{K}(k)A, k.a - \operatorname{Ad}_{K}(k)A.v) \quad \forall (k,v) \in G, \quad (A,a) \in \mathfrak{g}, \\ \operatorname{Ad}_{G}^{*}(k,v)(f,\ell) &= (\operatorname{Ad}_{K}^{*}(k)f + k.\ell \odot v, k.\ell) \quad \forall (k,v) \in G, \quad (f,\ell) \in \mathfrak{g}^{*}, \end{aligned}$$

where $\ell \odot v$ is the element of \mathfrak{k}^* defined by

$$\ell \odot v(A) = \ell(A.v) = -(A.\ell)(v) \quad \forall A \in \mathfrak{k}, \quad \ell \in V^*, \quad v \in V.$$

Note that the map $\odot: V^* \times V \longrightarrow \mathfrak{k}^*$ defined by $(\ell \odot v)(A) = \ell(A.v), v \in V, A \in \mathfrak{k}$ satisfies a fundamental equivariance property

$$\operatorname{Ad}_{K}^{*}(k)(\ell \odot v) = (k.\ell) \odot (k.v), \quad k \in K.$$

Therefore, the coadjoint orbit of G passing through $(f, \ell) \in \mathfrak{g}^*$ is given by

$$\mathcal{O}_{(f,\ell)}^G = \Big\{ \Big(Ad_K^*(k)f + k.\ell \odot v, k.\ell \Big), k \in K, v \in V \Big\}.$$

For $\ell \in V^*$, we define $K_{\ell} := \{k \in K; k.\ell = \ell\}$ the isotropy subgroup of ℓ in K and the Lie algebra of K_{ℓ} is given by the vector space $\mathfrak{k}_{\ell} = \{A \in \mathfrak{k}; A.\ell = 0\}$. Let $\iota_{\ell} : \mathfrak{k}_{\ell} \hookrightarrow \mathfrak{k}$ be the injection map, then $\iota_{\ell}^* : \mathfrak{k}^* \longrightarrow \mathfrak{k}_{\ell}^*$ is the projection map and we have

$$\mathfrak{k}_{\ell}^{\circ} = \operatorname{Ker}\left(\imath_{\ell}^{*}\right),\tag{1}$$

ISSN 1027-3190. Укр. мат. журн., 2020, т. 72, № 7

946

where $\mathfrak{k}_{\ell}^{\circ}$ is the annihilator of \mathfrak{k}_{ℓ} . If we define the linear map $h_{\ell}: \mathfrak{k} \longrightarrow V^*$ by

$$h_{\ell}(A) := -A.\ell \quad \forall A \in \mathfrak{k},$$

then we have $\mathfrak{k}_{\ell} = \operatorname{Ker}(h_{\ell})$. The dual $h_{\ell}^* : V \longrightarrow \mathfrak{k}^*$ of h_{ℓ} is given by the relation $h_{\ell}^*(v)(A) = h_{\ell}(A)(v) = -(A.\ell)(v)$, and so $h_{\ell}^*(v) = \ell \odot v \ \forall \ell \in V^*, \ \forall v \in V$ (for more details see [3]).

The following is a useful lemma from [3], giving a characterization of the annihilator $\mathfrak{k}_{\ell}^{\circ}$ in terms of the linear map h_{ℓ} .

Lemma 1. Using the previous notations, then we have the equality

$$\mathfrak{k}_{\ell}^{\circ} = \mathrm{Im}(h_{\ell}^{*}).$$

Here we recall briefly the description of the unitary dual of G via Mackey's little group theory (see [10]). For every non-zero linear form ℓ on V, we denote by χ_{ℓ} the unitary character of the vector Lie group V given by $\chi_{\ell} = e^{i\ell}$. Let ρ be an irreducible unitary representation of K_{ℓ} on some Hilbert space \mathcal{H}_{ρ} . The map

$$\rho \otimes \chi_{\ell} : (k, v) \longmapsto e^{i\ell(v)}\rho(k)$$

is a representation of the Lie group $K_{\ell} \ltimes V$ such that one induce up so as to get a unitary representation of G. We denote by $\mathcal{H}_{(\rho,\ell)} := L^2(K,\mathcal{H}_{\rho})^{\rho}$ the subspace of $L^2(K,\mathcal{H}_{\rho})$ consisting of all the maps ξ which satisfy the covariance condition

$$\xi(kh) = \rho(h^{-1})\xi(k) \quad \forall k \in K, \quad h \in K_{\ell}.$$

The induced representation

$$\pi_{(\rho,\ell)} := \operatorname{Ind}_{K_{\ell} \ltimes V}^{K \ltimes V} (\rho \otimes \chi_{\ell})$$

is defined on $\mathcal{H}_{(\rho,\ell)}$ by

$$\pi_{(\rho,\ell)}(k,v)\xi(h) = e^{i\ell(h^{-1}.v)}\xi(k^{-1}h),$$

where $(k, v) \in G, h \in K$ and $\xi \in \mathcal{H}_{(\rho,\ell)}$. By Mackey's theory we can say that the induced representation $\pi_{(\rho,\ell)}$ is irreducible and every infinite dimensional irreducible unitary representation of Gis equivalent to one of $\pi_{(\rho,\ell)}$. Moreover, tow representations $\pi_{(\rho,\ell)}$ and $\pi_{(\rho',\ell')}$ are equivalent if and only if ℓ and ℓ' are contained in the same K-orbit and the representation ρ and ρ' are equivalent under the identification of the conjugate subgroups K_{ℓ} and $K_{\ell'}$. All irreducible representations of G which are not trivial on the normal subgroup V, are obtained by this manner. On the other hand, we denote also by τ the extension of every unitary irreducible representation τ of K on G, which simply defined by $\tau(k, v) := \tau(k)$ for $k \in K$ and $v \in V$. Let Ω be a K-orbit in V^* . We fix $\ell \in \Omega$ and we define the subset $\widehat{G}(\Omega)$ of \widehat{G} by

$$\widehat{G}(\Omega) = \left\{ \operatorname{Ind}_{K_{\ell} \ltimes V}^{K \ltimes V}(\rho \otimes \chi_{\ell}); \rho \in \widehat{K_{\ell}} \right\}$$

Then we conclude that

$$\widehat{G} = \widehat{K} \bigcup \Big(\bigcup_{\Omega \in \Lambda} \widehat{G}(\Omega)\Big),$$

where Λ is the set of the nontrivial orbits in V^*/K .

In the remainder of this paper, we shall assume that G is exponential, i.e., K_{ℓ} is connected for all $\ell \in V^*$. Let ρ_{μ} be an irreducible representation of K_{ℓ} with highest weight μ . For simplicity, we shall write $\pi_{(\mu,\ell)}$ instead of $\pi_{(\rho_{\mu},\ell)}$ and $\mathcal{H}_{(\mu,\ell)}$ instead of $\mathcal{H}_{(\rho_{\mu},\ell)}$.

We close this section by presenting two results which are being used in the description of the dual topology of G. These are required for our proof of Theorem 1.

Let N be an Abelian group, and assume that the compact Lie group K acts on the left on N by automorphisms. As sets, the semidirect product $K \ltimes N$ is the Cartesian product $K \times N$ and the group multiplication is given by

$$(k_1, x_1) \cdot (k_2, x_2) = (k_1 k_2, x_1 + k_1 x_2).$$

Let χ be a unitary character of N, and let K_{χ} be the stabilizer of χ under the action of K on \hat{N} defined by

$$(k \cdot \chi)(x) = \chi(k^{-1}x).$$

If ρ is an element of $\widehat{K_{\chi}}$, then the triple $(\chi, (K_{\chi}, \rho))$ is called a cataloguing triple. From the notations of [2], we denote by $\pi(\chi, K_{\chi}, \rho)$ the induced representation $\operatorname{Ind}_{K_{\chi} \ltimes N}^{K \ltimes N}(\rho \otimes \chi)$. Referring to [2, p. 187], we have the following proposition.

Proposition 1. The mapping $(\chi, (K_{\chi}, \rho)) \longrightarrow \pi(\chi, K_{\chi}, \rho)$ is onto $\hat{K} \ltimes \hat{N}$.

We denote by $\mathcal{A}(K)$ the set of all pairs (K', ρ') , where K' is a closed subgroup of K and ρ' is an irreducible representation of K'. We equip $\mathcal{A}(K)$ with the Fell topology (see [6]). Therefore, every element in $\widehat{K \ltimes N}$ can be catalogued by elements in the topological space $\widehat{N} \times \mathcal{A}(K)$. Larry Baggett has given an abstract description of the topology of the dual space of a semidirect product of a compact group with an Abelian group in terms of the Mackey parameters of the dual space (see [2], Theorem 6.2-A). The following result provides a precise and neat description of the topology of $\widehat{K \ltimes N}$.

Theorem 2. Let Y be a subset of $\widetilde{K} \ltimes \widetilde{N}$ and π an element of $\widetilde{K} \ltimes \widetilde{N}$. Then π is weakly contained in Y if and only if there exist: a cataloguing triple $(\chi, (K_{\chi}, \rho))$ for π , an element (K', ρ') of $\mathcal{A}(K)$, and a net $\{(\chi_n, (K_{\chi_n}, \rho_n))\}$ of cataloguing triples such that:

(i) for each n, the irreducible unitary representation $\pi(\chi_n, K_{\chi_n}, \rho_n)$ of $K \ltimes N$ is an element of Y;

(ii) the net $\{(\chi_n, (K_{\chi_n}, \rho_n))\}$ converges to $(\chi, (K', \rho'));$

(iii) K_{χ} contains K', and the induced representation $\operatorname{Ind}_{K'}^{K_{\chi}}(\rho')$ contains ρ .

3. Admissible coadjoint orbits of semidirect product. We keep the notations of Section 2. Fix a non-zero linear form $\ell \in V^*$, and we consider an irreducible representation ρ_{μ} of K_{ℓ} with highest weight μ . Then the stabilizer G_{ψ} of $\psi = (\mu, \ell)$ in G is given by

$$G_{\psi} = \left\{ (k, v) \in G; \; (\mathrm{Ad}_{K}^{*}(k)\mu + k.\ell \odot v, k.\ell) = (\mu, \ell) \right\} =$$
$$= \left\{ (k, v) \in G; \; k \in K_{\ell}, \mathrm{Ad}_{K}^{*}(k)\mu + \ell \odot v = \mu \right\} =$$
$$= \left\{ (k, v) \in G; \; k \in K_{\ell}, \mathrm{Ad}_{K}^{*}(k)\mu = \mu \right\}$$

since $i_{\ell}^*(\ell \odot v) = 0$ (see Lemma 1 and the equality (1)). Thus, we have $G_{\psi} = K_{\psi} \ltimes V_{\psi}$, then ψ is aligned (see [9]). A linear form $\psi \in \mathfrak{g}^*$ is called admissible if there exists a unitary character χ of the identity component of G_{ψ} such that $d\chi = i\psi_{|\mathfrak{g}_{\psi}}$. According to Lipsman (see [9]), the representation of G obtained by holomorphic induction from (μ, ℓ) is equivalent to the representation $\pi_{(\mu,\ell)}$. Let τ_{λ} be an irreducible representation of K with highest weight λ , then the representation of G obtained by

holomorphic induction from $(\lambda, 0)$ is equivalent to τ_{λ} . The coadjoint orbit of G through $(\lambda, 0) \in \mathfrak{g}^*$ is denoted by \mathcal{O}_{λ}^G . It is clear that \mathcal{O}_{λ}^G is an admissible coadjoint orbit of G. We denote by $\mathfrak{g}^{\ddagger} \subset \mathfrak{g}^*$ the set of all admissible linear forms on \mathfrak{g} . The quotient space $\mathfrak{g}^{\ddagger}/G$ is called the space of admissible coadjoint orbits of G. Moreover, one can check that $\mathfrak{g}^{\ddagger}/G$ is the union of the set of all orbits $\mathcal{O}_{(\mu,\ell)}^G$ and the set of all orbits \mathcal{O}_{λ}^G .

We conclude this section by recalling needed results. Let L be a closed subgroup of K. By T_K and T_L be maximal tori, respectively, in K and L such that $T_L \subset T_K$. Their corresponding Lie algebras are denoted by $\mathfrak{t}_{\mathfrak{k}}$ and $\mathfrak{t}_{\mathfrak{l}}$. We denote by W_K and W_L the Weyl groups of K and L associated, respectively, to the tori T_K and T_L . Notice that every element $\lambda \in P_K$ takes pure imaginary values on $\mathfrak{t}_{\mathfrak{k}}$, where P_K is the integral weight lattice of T_K . Hence such an element $\lambda \in P_K$ can be considered as an element of $(i\mathfrak{t}_{\mathfrak{k}})^*$. Let C_K^+ be a positive Weyl chamber in $(i\mathfrak{t}_{\mathfrak{k}})^*$, and we define the set P_K^+ of dominant integral weights of T_K by $P_K^+ := P_K \cap C_K^+$. For $\lambda \in P_K^+$, denote by \mathcal{O}_{λ}^K the K-coadjoint orbit passing through the vector $-i\lambda$. It was proved by Kostant in [7], that the projection of \mathcal{O}_{λ}^K on $\mathfrak{t}_{\mathfrak{k}}^*$ is a convex polytope with vertices $-i(w.\lambda)$ for $w \in W_K$, and that is the convex hull of $-i(W_K.\lambda)$. For the same manner, we fix a positive Weyl chamber C_L^+ in $\mathfrak{t}_{\mathfrak{k}}^*$ and we define the set P_L^+ of dominant integral weights of T_L .

Also we denote by $\imath_{\mathfrak{l}}^*$ the \mathbb{C} -linear extension of both the natural projection of \mathfrak{k}^* onto \mathfrak{l}^* and the natural projection of $\mathfrak{t}^*_{\mathfrak{k}}$ onto $\mathfrak{t}^*_{\mathfrak{l}}$. Consider tow irreducible representations $\tau_{\lambda} \in \widehat{K}$ and $\rho_{\mu} \in \widehat{L}$ with respective highest weights $\lambda \in P_K^+$ and $\mu \in P_L^+$. We have the following result.

Lemma 2. If $\mu = i_{\mathbb{I}}^*(s,\lambda)$ with $s \in W_K$, then τ_{λ} occurs in the induced representation $\operatorname{Ind}_L^K(\rho_{\mu})$. We refer to [1], for the proof of this lemma.

4. Main results. We shall freely use the notations of the previous sections. *Remark* **1.** We have the following convergence:

$$\ell_m \longrightarrow \ell,$$
$$K_{\ell_m} \subseteq K_{\ell}.$$

To study the convergence in the quotient space $\mathfrak{g}^{\ddagger}/G$, we need to the following result (see [8, p. 135] for the proof).

Lemma 3. Let G be a unimodular Lie group with Lie algebra \mathfrak{g} and let \mathfrak{g}^* be the vector dual space of \mathfrak{g} . We denote \mathfrak{g}^*/G the space of coadjoint orbits and by $p_G : \mathfrak{g}^* \longrightarrow \mathfrak{g}^*/G$ the canonical projection. We equip this space with the quotient topology, i.e., a subset V in \mathfrak{g}^*/G is open if and only if $p_G^{-1}(V)$ is open in \mathfrak{g}^* . Therefore, a sequence $(\mathcal{O}_n^G)_n$ of elements in \mathfrak{g}^*/G converges to the orbit \mathcal{O}^G in \mathfrak{g}^*/G if and only if for any $l \in \mathcal{O}^G$, there exist $l_n \in \mathcal{O}_n^G$, $n \in \mathbb{N}$, such that $l = \lim_{n \to +\infty} l_n$.

Now, we are in position to prove the following propositions.

Proposition 2. Let $(\mathcal{O}_{(\mu^m,\ell_m)}^G)_m$ be a sequence in $\mathfrak{g}^{\ddagger}/G$. If $(\mathcal{O}_{(\mu^m,\ell_m)}^G)_m$ converges to $\mathcal{O}_{(\mu,\ell)}^G$ in $\mathfrak{g}^{\ddagger}/G$, then we have: $(\ell_m)_m$ converges to ℓ and for m large enough, $\rho_{\mu} \in \operatorname{Ind}_{K_{\ell_m}}^{K_{\ell}}(\rho_{\mu^m})$.

Proof. We assume that the sequence of admissible coadjoint orbits $(\mathcal{O}_{(\mu^m,\ell_m)}^G)_m$ converges to $\mathcal{O}_{(\mu,\ell)}^G$ in $\mathfrak{g}^{\ddagger}/G$. By referring to [3], we show that the coadjoint orbit $\mathcal{O}_{(\mu,\ell)}^G$ is always obtained by symplectic induction from the coadjoint orbit $M = \mathcal{O}_{(\mu,\ell)}^H$ of $H := K_\ell \ltimes V$ passing through $(\mu,\ell) \in \mathfrak{k}_\ell^* \oplus V^*$ ($\mathfrak{k}_\ell \ltimes V := \operatorname{Lie}(H)$), i.e.,

$$\mathcal{O}_{(\mu,\ell)}^G = M_{\text{ind}} := J_{\widetilde{M}}^{-1}(0)/H,\tag{2}$$

where $J_{\widetilde{M}} : \widetilde{M} = M \times T^*G \longrightarrow \mathfrak{k}_{\ell}^* \ltimes V^*$ is the momentum map of \widetilde{M} and the zero level set $J_{\widetilde{M}}^{-1}(0)$ is given by

$$J_{\widetilde{M}}^{-1}(0) = \Big\{ \Big((\mathrm{Ad}_K^*(k)\mu, \ell), g, (\mathrm{Ad}_K^*(k)\mu + \ell \odot v, \ell) \Big), \ k \in K_\ell, g \in G, v \in V \Big\}.$$

Let φ_M be the action of H on M, hence H acts on $\widetilde{M} = M \times T^*G$ by $\varphi_{\widetilde{M}}$ as follows:

$$\varphi_{\widetilde{M}}(h)(\alpha, g, f) = \left(\varphi_M(h)(\alpha), gh^{-1}, \operatorname{Ad}_H^*(h)f\right)$$
(3)

for all $h \in H$, $(\alpha, g, f) \in M \times T^*G$. By identifying \mathfrak{g}^* with the left-invariant 1-form on G. Then we can write $T^*G \cong G \times \mathfrak{g}^*$.

Using Lemma 3 and by combining (2) with (3), then there exist sequences $k_m, h_m \in K_{\ell_m}$, $v_m, w_m \in V$, and $g_m \in G$ such that the sequence $(\phi_m)_m$ defined by

$$\phi_m = \varphi_{\widetilde{M}}(k_m, v_m) \Big((\operatorname{Ad}_K^*(h_m)\mu^m, \ell_m), g_m, (\operatorname{Ad}_K^*(h_m)\mu^m + \ell_m \odot w_m, \ell_m) \Big) = \\ = \Big(\operatorname{Ad}_K^*(k_m h_m)\mu^m + \imath_{\ell_m}^*(\ell_m \odot v_m), \ell_m \Big), g_m(k_m, v_m)^{-1}, \\ (\operatorname{Ad}_K^*(k_m h_m)\mu^m + \operatorname{Ad}_K^*(k_m)(\ell_m \odot w_m) + \ell_m \odot v_m, \ell_m) \Big)$$

converges to $((\mu, \ell), e_G, (\mu, \ell))$. It follows that

$$\ell_m \longrightarrow \ell$$

and

$$\operatorname{Ad}_{K}^{*}(k_{m}h_{m})\mu^{m} + \imath_{\ell_{m}}^{*}(\ell_{m} \odot v_{m}) \longrightarrow \mu$$
(4)

as $n \to +\infty$. By compactness of K we may assume that $(k_m h_m)_m$ converges to $p \in K_{\ell_n} \subset K_{\ell}$. By using the fact that $i_{\ell_m}^*(\ell_m \odot v_m) = 0$, we, from (4), obtain that

$$\mu^m = Ad^*(p^{-1})\mu$$

for *m* large enough. Furthermore, we known that there exists an element $s \in W_{K_{\ell}}$ such that $\operatorname{Ad}^*(p^{-1})\mu = s.\mu$. Hence $\mu^m = s.\mu$ for *m* large enough and we conclude by Lemma 2 that for *m* large enough, $\rho_{\mu} \in \operatorname{Ind}_{K_{\ell_m}}^{K_{\ell}}(\rho_{\mu^m})$.

Proposition 2 is proved.

Proposition 3. If the sequence $(\mathcal{O}_{(\mu^m,\ell_m)}^G)_m$ converges to \mathcal{O}_{λ}^G in $\mathfrak{g}^{\ddagger}/G$, then we have: $(\ell_m)_m$ converges to 0 and for m large enough, $\tau_{\lambda} \in \operatorname{Ind}_{K_{\ell_m}}^K(\rho_{\mu^m})$.

Proof. We use the notations and proceedings of the proof of the last proposition. Let us assume that the sequence $(\mathcal{O}_{(\mu^m,\ell_m)}^G)_m$ converges to \mathcal{O}_{λ}^G . Then there exist sequences $k_m, h_m \in K_{\ell_m}$, $v_m, w_m \in V$, and $g_m \in G$ such that the sequence $(\Psi_m)_m$ defined by

$$\Psi_m = \varphi_{\widetilde{M}}(k_m, v_m) \Big((\operatorname{Ad}_K^*(h_m)\mu^m, \ell_m), g_m, (\operatorname{Ad}_K^*(h_m)\mu^m + \ell_m \odot w_m, \ell_m) \Big) = \\ = \Big(\operatorname{Ad}_K^*(k_m h_m)\mu^m + \imath_{\ell_m}^*(\ell_m \odot v_m), \ell_m \Big), g_m(k_m, v_m)^{-1}, \\ (\operatorname{Ad}_K^*(k_m h_m)\mu^m + \operatorname{Ad}_K^*(k_m)(\ell_m \odot w_m) + \ell_m \odot v_m, \ell_m) \Big)$$

converges to $((\lambda, 0), e_G, (\lambda, 0))$. From the above facts, we conclude the following convergence:

$$\ell_m \longrightarrow 0,$$
 (5)

$$\mathrm{Ad}^*(k_m h_m) \mu^m \longrightarrow \lambda. \tag{6}$$

By assumption that the sequence $(k_m h_m)_m$ converges to $p \in K_{\ell_m}$, we obtain, from (6), that $\mu^m = Ad^*(p^{-1})\lambda$ for *m* large enough. Hence there exists $w \in W_K$, such that $\mu^m = w.\lambda$ for *m* large enough. Lemma 2 allows us to derive that $\tau_\lambda \in Ind_{K_{\ell_m}}^K(\rho_{\mu^m})$ for large *m*.

Proposition 3 is proved.

Proposition 4. If $(\mathcal{O}_{\lambda^m}^G)_m$ converges to \mathcal{O}_{λ}^G in $\mathfrak{g}^{\ddagger}/G$, then $\lambda^m = \lambda$ for large m. **Proof.** Suppose that $(\mathcal{O}_{\lambda^m}^G)_m$ converges to \mathcal{O}_{λ}^G in $\mathfrak{g}^{\ddagger}/G$, then there exists $(k_m)_m \subset K$ such that

$$\operatorname{Ad}_{K}^{*}(k_{m})\lambda^{m} \longrightarrow \lambda \quad \text{as} \quad m \longrightarrow +\infty.$$

By compactness of K we may assume that $(k_m)_m$ converges to $k \in K$. Then we obtain $\lambda^m = \operatorname{Ad}_K^*(k^{-1})\lambda$ for m large enough. Hence there exists $w \in W_K$ such that $\operatorname{Ad}_K^*(k^{-1}) = w.\lambda$ for m large enough. It follows that $\lambda^m = w.\lambda$ for m large enough. Since the weights λ^m and λ are contained in the set iC_K^+ and since each W_K -orbit in \mathfrak{k}^* intersects the closure iC_K^+ in exactly one point, it follows that $\lambda^m = \lambda$ for m large enough.

Proposition 4 is proved.

Combining the above Propositions 2, 3 and 4 with Baggett's theorem (Theorem 2), we obtain our result (Theorem 1).

References

- D. Arnal, M. Ben Ammar, M. Selmi, Le problème de la réduction à un sous-groupe dans la quantification par déformation, Ann. Fac. Sci. Toulouse, 12, 7–27 (1991).
- W. Baggett, A description of the topology on the dual spaces of certain locally compact groups, Trans. Amer. Math. Soc., 132, 175–215 (1968).
- 3. P. Baguis, Semidirect product and the Pukanszky condition, J. Geom. and Phys., 25, 245-270 (1998).
- M. Ben Halima, A. Rahali, On the dual topology of a class of Cartan motion groups, J. Lie Theory, 22, 491–503 (2012).
- 5. M. Elloumi, J. Ludwig, Dual topology of the motion groups $SO(n) \ltimes \mathbb{R}^n$, Forum Math., 22, 397–410 (2008).
- J. M. G. Fell, Weak containment and induced representations of groups (II), Trans. Amer. Math. Soc., 110, 424–447 (1964).
- B. Kostant, On convexity, the Weyl group and the Iwasawa decomposition, Ann. Sci. Ecole Norm. Supér, 6, 413–455 (1973).
- 8. H. Leptin, J. Ludwig, Unitary representation theory of exponential Lie groups, de Gruyter, Berlin (1994).
- 9. R. L. Lipsman, Orbit theory and harmonic analysis on Lie groups with co-compact nilradical, J. Math. Pures et Appl., **59**, 337-374 (1980).
- 10. A. Rahali, Dual topology of generalized motion groups, Math. Rep., 20(70), 233-243 (2018).
- 11. A. Messaoud, A. Rahali, On the continuity of the Lipsman mapping of semidirect products, Rev. Roum. Math. Pures et Appl., **3(63)**, 249–258 (2018).

Received 10.05.17