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ON p(z)-KIRCHHOFF-TYPE EQUATION
INVOLVING p(x)-BIHARMONIC OPERATOR VIA GENUS THEORY

PO p(x)-PIBHSAHHS TUITY KIPXT'O®A
I3 p(x)-BITAPMOHIYHUM OIIEPATOPOM 3 TOUYKH 30PY TEOPII POJTY

The paper deals with the existence and multiplicity of nontrivial weak solutions for the p(z)-Kirchhoff-type problem

-M (/ ﬁ|Au|p(w da:) Al yu= f(z,u) in €,
Q

u=Au=0 on OS2

By using variational approach and Krasnoselskii’s genus theory, we prove the existence and multiplicity of solutions for
the p(z)-Kirchhoff-type equation.

PosrusgaroTees mpo0aeMH iICHYBaHHS Ta MHOXKHUHHOCTI HETPUBIAILHUX CIa0KUX po3B’s3kiB p(x)-3amaui tuny Kipxroda
p

-M (/ $|Au\p(z) dx) AZ(I)u = f(z,u) B Q,

Q

u=Au=0 mna ON0.

BukopucToBytoun BapiawiifHuii miaxix Ta Teopiro poxy KpacHocenabchkoro, Mu JOBOJMMO iCHYBaHHS Ta MHOXKHHHICTH
po3B’si3kiB st p(z)-piBmsHHs THITY Kipxroda.

1. Introduction. In this paper, we are interested in the following problem:

-M /Z)1|Au|p($)da@ Ag(x)u:f(x,u) in Q,

(z) (1.1)
u=Au=0 on 09,

where Q is a bounded domain in RY, N > 2, with smooth boundary 052, Af)(x)u
= A(\Au|p($)_2Au) is the p(z)-biharmonic operator, p is a continuous function on Q with 1 <
< p(z) < N.

We assume that M (t) and f(x,t) satisfy the following assumptions:

(M;) M:R" — RT is a continuous function and satisfies the (polynomial growth) condition
mtP ™t < M(t) < mot®™?

for all t > 0 and my, mo real numbers such that 0 < m; < mo and a > 5 > 1;
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(f1) f:Q xR — R is a continuous function such that
dift]"® 7 < f(w.t) < dolt] D!

for all + > 0 and for all # € Q, where dy, d are positive constants and s,q € C(9) such that

1 <s(x) <q(z) < p*(x) < m

(f2) f is an odd function according to t, that is,

for all = € Q;

f(xvt) = —f(.il?, _t)

for all t € R and for all = € €.
The problem (1.1) is related to the stationary problem of a model presented by Kirchhoft [16].
More precisely, Kirchhoff proposed a model given by the equation

u

a s =0, (1.2)

which extends the classical D’ Alembert’s wave equation, by considering the effect of the changing

in the length of the string during the vibration. A distinguishing feature of equation (1.2) is that

E 2
the equation contains a nonlocal coefficient % + ﬁ dx which depends on the average

ox

1 [Eou)?
2L
have the following meanings: L is the length of the string, & is the area of the cross-section, E' is

dz, and hence the equation is no longer a pointwise identity. The parameters in (1.2)

the Young modulus of the material, p is the mass density and pg is the initial tension.

The operator A;(x)u = A(|AuP®~2Auy) is said to be the p(z)-biharmonic, and becomes p-
biharmonic when p(z) = p (a constant). The study of problems involving variable exponent growth
conditions has a strong motivation due to the fact that they can model various phenomena which
arise in the study of elastic mechanics [19], electrorheological fluids [20] or image restoration [1].

In recent years, elliptic problems involving p-Kirchhoff-type operators have been studied in many
papers, we refer to [2, 4], in which the authors have used different methods to get the existence of
solutions for (1.1) in the case when p(z) = p is a constant.

The study of the Kirchhoff-type equations has already been extended to the case involving the
p-Laplacian operator given by the formula Aju = div(\Au|p_2Au) [8]

p—1
-M /|Vu|pd:v Apu= f(z,u) in Q,

Q

u=0 on 09,

we point out that establishing conditions on M and f for which Kirchhoff-type equations possess
solutions is the key argument.
In the case p(x)-Laplacian operator, in [3], the authors studied the Kirchhoff-type equation
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Q

(1.3)

u=0 on O0f,

by using the Krasnoselskii’s genus theory, they showed the existence and multiplicity of the solutions
of the the problem (1.3).

Motivated by the above papers and the results in [17, 18], we consider (1.1) to study the existence
and multiplicity of the solutions.

This paper is organized as follows. In Section 2, we present some necessary preliminary results
on variable exponent Sobolev spaces. Next, we give the main results and proofs about the existence
and multiplicity of the solutions.

2. Preliminaries. In order to deal with p(z)-biharmonic operator problems, we need some
results on spaces LP(*) () and W#P(*)(Q) and some properties of p(z)-biharmonic operator, which
we will use later (for details see [21, 22]).

Define the generalized Lebesgue space by

Lp(gc)(Q) =qu: Q@ — R, measurable and / |u(:p)|p($) dz < 0o

where p € C; () and
Ci(Q)={heCQ): h(z)>1Vze}.
Denote

p" =maxp(z), p =minp(z),
e =19

and, forall z € Q and k& > 1,

Np(z) if px) <N
pi(z) = ¢ NV —p(@)’ ’
+o00, if p(z) > N,
and
Np(x) .
—_ f k N
i) = A N—kpa) | p(z) <N,
+o00, if kp(z)> N.
One introduces in LP(*)(Q) the following norm:
p(z)
|| p(zy = inf ¢ > 0; / ule) de <1,
w
Q

and the space (Lp(m)(Q), |-Ip(z)) is a Banach.
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Proposition 2.1 [9, 21]. The space (LP®)(Q), |- |p()
and its conjugate space is L1 (Q), where q(x) is the conjugate function of p(z), ie.,

) is separable, uniformly convex, reflexive

1 1
4+~ =1 VzeQ.
p(z)  q(x)

For all u € LP®)(Q) and v € LY®)(Q), the Holder s type inequality

/ d <_<1+1>!| v
uv dx W) |V o (2
g p(z)VIg(z)
Q
holds true.

Furthermore, if we define the mapping p: LP(*)(Q) — R by
plw) = [ 1ap® da,
Q

then the following relations hold.
Proposition 2.2 [21, 22].
A [ulpe <1 (=1, >1) e pu) <1 (=1, >1),
(i) Julpe) > 1= [ul’ ) < plu) < [ul’,,,
(i) |up — ulp@) — 0 & plup —u) — 0.
The Sobolev space with variable exponent Wk’p("”)(ﬂ) is defined by

WEPE(Q) = {u € LP)(Q): Du e LP)(Q), |a] <k},

where
olely
D= oo aay
] 0x5? ... Oz
is the derivation in distribution sense, with @ = (ay,ag,...,ay) is a multiindex and |o| =

>
= Q.
i=1 "

The space W*»(#)(Q) is equipped with the norm

lullkp(z) = Z | DUl p(z)

o<k

also becomes a Banach, separable and reflexive space. For more details, we refer to [9, 10, 13, 15].
Proposition 2.3 [9]. Let p,r € C(Q) such that r(z) < pi(z) for all x € Q. Then there is a
continuous embedding

WHEP@ (Q) — LT®)(Q).
If we replace < with <, the embedding is compact.
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We denote by W(;c’p(x)(Q) the closure of C$°(2) in WHPE)(Q).
Consider the function space X defined by

X = W@ Q) 0wy (Q).
Then X is a separable and reflexive Banach space equipped with the norm
Jull = llull1 p) + lull2,p)-

Remark2.1. According to [7], the norm [[ul|5 () is equivalent to the norm |Awul,(,) in the space

W2r@)(Q) 0 WP (Q). Consequently, the norms [[l2,p(z): |I-]| and |A.|,;y are equivalent.
Proposition 2.4 [14]. If we put

J(u) = / | AuP®) dg,

Q

then, for all u,u, € X, the following relations hold true:
0 lu<1l(=1 >) <= Ju)<l(=1; >1),
Q) fufl > 1= JulP” < J(w) < |7,

for all u, € X, we have
(i) |Jun|| — 0 <= J(u,) — 0,
(iv) [Jup| — 00 <= J(un) — 0.
Proposition 2.5 [12]. Let X be a Banach space and

W= [ Aur® gy
Aw) /p(x)m| da.

The functional A : X — R is convex. The mapping N : X — X' (A’ is the Fréchet derivative of
A) is a strictly monotone, bounded homeomorphism and of (S5.), namely,

up, =~ u  (weakly) and lim (A (up),up —u) <0 implies u, — u (strongly),

n—oo

where X = W2,p(m) (Q) N Wol’p(x) (Q)
Definition 2.1. We say that v € X is a weak solution of (1.1) if

M /p(lx)mmp(x) dx /’Au‘p(x)—QAuAgpdx:/f(x,u)apdm
Q Q

forall p € X.
We associate to the problem (1.1) the energy functional, defined as I: X — R,

u) =M L ulP@ dz | — x,u)dx
) = 37 | [ —siaupa Q/F<,>d,

where Z\/Z(t) = /DtM(s) ds and F(z,u) = /Ouf(x,t) dt.
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Standard arguments show that I € C*(X,R) and

(I'(u), v) = lim I(U+h1;L) —I(u) _

1
/ (— | AufP®) dz / |AuP@ =2 AuAv dx — / f (@, u)vde
p(z)
Q
for any u,v € X.

Hence, we can notice that critical points of functional I are the weak solutions for problem (1.1).

For simplicity, we use d;, to denote the general nonnegative or positive constant (the exact value
may change from line to line).

3. Main results and proofs. We present some basic notions on the Krasnoselskii’s genus (see
[5, 6]) that we will use in the proof of our main results.

Let Y be a real Banach space. Set

R={FECY\{0}: E is compact and E = —E}.
Definition 3.1 [6, 23]. Let E € R and Y = R*. The genus v(E) of E is defined by
v(E) = min {k > 1; there exists an odd continuous mapping ¢: E — Rk\{()}}

If such a mapping does not exist for any k& > 0, we set y(E) = oo. Note also that if ' is a subset,
which consists of finitely many pairs of points, then v(E) = 1. Moreover, from definition, v(2) = 0.
A typical example of a set of genus k is a set, which is homeomorphic to a (k — 1)-dimensional
sphere via an odd map.

Now, we will give some results of Krasnoselskii’s genus, which are necessary throughout the
present paper.

Theorem 3.1 [6,23]. Let Y = RY and 0 be the boundary of an open, symmetric, and
bounded subset Q@ C RN with 0 € Q. Then v(02) = N.

Corollary3.1 [6, 23]. ~(S™V~1) = N (recall the notation SN—1 which stands for the unit sphere
in RV).

Remark3.1 [6, 23]. If Y is of infinite dimension and separable and S is the unit sphere in Y,
then v(5) = oc.

Definition 3.2 [6, 23]. We say that the functional satisfies the Palais—Smale condition (PS) if
every sequence (up) C 'Y such that

[I(u,)| <C and  I'(up) — 0 as n— 0

contains a convergent subsequence in the norm of Y.

The first result of the present paper is the following theorem.

Theorem 3.2. Suppose (M)), (f1), and (£2) hold. If p(z) < q(z) < p*(x) for all x € Q and
q" < Bp~, then the problem (1.1) has infinitely many solutions.

The following result obtained by Clark in [11] is the main idea, which we use in the proof of
Theorem 3.2.

Theorem 3.3. Let J € C'(X,R) be a functional satisfying the (PS) condition. Furthermore, let
us suppose that:
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(1) J is bounded from below and even,

(ii) there is a compact set K € R such that v(K) = k and sup,cx J(x) < J(0).
Then J possesses at least k pairs of distinct critical points, and their corresponding critical values
are less than J(0).

Lemma 3.1. Suppose (My), (1), and q* < Bp~ hold. Then I is bounded from below.

Proof. From (M) and (f}), we have

—~ 1
I(u)=M /Aup(x)d:c /Fx,udazz
=3 { [ [

Jo =4 @ |Au|P(®) dz

d
= my / p’dp —2/|U’q dr =
T8

0

B
ma 1 d2
— 1 — | AulP® ¢4 _/ a(z) 4
B /p(fr:)‘ uf e dr q- Jul dx
Q Q

and by Propositions 2.2, 2.3, and 2.4, for all u € X, we get

dgC’

I(u) > a 3.1)
(u) ﬁ(pﬂ s (alul)” - [
where «: [0, +00[— R is defined by
Pt if t<1,
a(t) =
tr, if t>1.

As BpT > Bp~ > qT, I is bounded from below.
Lemma 3.2. Suppose (My), (f1), and q* < p~ hold. Then I satisfies the (PS) condition.
Proof. Let (u,) in X be a sequence such that

I(up) — ¢ and I'(up) — 0 as n — oo. (3.2)

From (3.2), we have |I(u,)| < d3. This fact, combined with (3.1), implies that

d3 > I(up) > [ e M

(p+ )«

where [Ju,| > 1. Because ¢* < Sp~, I is coercive, we deduce that (u,) is bounded in X. Hence,
there exists a subsequence, still denoted by (u,,) C X and u € X such that

Up — U as n—oo in X.
From Proposition 2.3, we obtain
Uup — u in LI®(Q),
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U, — u ae. (.
Then by (3.2), we have (I'(uy), u, — u) — 0. Thus,

1
p(x)

(I (wn), u — ) = M /

\Aun\p(x) dx / |Aun|p($)_2Aun(Aun — Au) dx—
Q

Q
_/f<x7un)(un_u)d$—>0
Q

By (f1) and Proposition 2.1, it follows that

/f(:n,un)(un —u)dx| < ds / | |9y, — ulda <
Q Q

< dﬁuun’q(r)—l

gt = to(a)-

Since (uy) converges strongly to « in L4®)(Q), that is, |u, — Uulg(zy — 0 as n — 0o, we get
/f(m,un)(un —u)dzr — 0.
Q

Hence,

M /1|Aun|p(m) dz / | A, [P 72 Ay (Auy, — Au) — 0.
2 p(z) Q

From (M), it follows

/ | At [P 72 Aty (Auy, — Au) — 0.
Q
By Proposition 2.5, we get that u,, — « in X.
Proof of Theorem 3.2. We consider (see [5])
Ry = {E C R: 1(E) = k),

cp. = inf supl(u), k=1,2,...,
k EE?Rkueg ()

then we have
—o<cp <<l ... < <cpp1 <

Now, we will prove that ¢, < 0 for every k£ € N. Since X is a separable Banach space, for any
k € N, we can choose a k-dimensional linear subspace X}, of X such that X}, C C§°(Q2). As the
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norms on Xy, are equivalent, there exists r;, € (0,1) such that u € X with ||ul| < 7 implies
|U’Loo S 0.

Set S¥ = {u € Xj: |lu|| = ri}. By the compactness of SF and condition (f}), there exists a
constant 7 > 0 such that

d
/F(:z:,u) dx > sTlr / u*@ de > n, Vu e ka. (3.3)
Q Q

From (M) and (f;), for u € S,l?k and t € (0,1), we have

— \Atu\f’(m) /
I(tu) =M /d:v — | F(z,tu)dx <
0= [0 (2 tu)

p(x)
< my /'Atu| _ 4 /Itu|s(”3) dz <

p(x) st
Q
< - gf)atap‘r,‘jpf — . (3.4)

Since sT < ¢~ < ¢" < Bp~ < ap~, we can find t; € (0,1) and &5 > 0 such that

I(tpu) < —ex <0 Yu € SF

Tk
that is,
I(u) < =g, <0 YueSf, .

It is clear that V(kark) =k, so ¢ < —e&i < 0. Therefore, by Lemma 3.1, Lemma 3.2 and above
results, we can apply Theorem 3.3 to obtain that the functional I admits at least k& pairs of distinct
critical points, and since k is arbitrary, we obtain infinitely many critical points of I.

Theorem 3.4. Suppose (My), (1), and (f2) hold. If q(x) < p(x) < p*(x) for all x € Q, then
the problem (1.1) has a sequence of solution {tuy: k =1,2,...} such that I(+uy) < 0.

Proof. We follow the same steps applied in the proof of the Lemma 3.1, and the fact ¢+ < p~,
we prove that I is coercive. Because I is weak lower semicontinuous, [ attaints its minimum on X,
that is, (1.1) has a solution. By the coercivity of I, we know that I satisfies (PS) condition on X.
And from condition (f), I is even.

In the rest of the proof, since we use the same arguments which we used in the proof of the
Theorem 3.2, we omit the discussions here.

Hence, if we follow the similar processes as we did in (3.3) and (3.4), and the fact sT < ¢~ <
<q" <p < ap,wecanfind t; € (0,1) and &5 > 0 such that

Iu) < —e, <0 Yuce kark.

Clearly, ’Y(kark) =k, so ¢ < —e < 0. By Krasnoselskii’s genus, each ¢y, is a critical value of I,

then there is a sequence of solutions {tuy: k =1,2,...} such that I(+u) < 0.
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