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SOME REFINEMENTS OF NUMERICAL RADIUS INEQUALITIES
JESAKI YTOUHEHHS HEPIBHOCTEM JIJISI YMCJOBUX PATYCIB

. . . Lo 1
In this paper, we give some refinements for the second inequality in §HAH < w(A) < ||A|l, where A € B(H). In
particular, if A is hyponormal by refining the Young inequality with the Kantorovich constant K(-,-), we show that

1 * 1 * <| |x’x> )T 3
w(A) < —|||A] + |A™||| £ =|||A] + |A*|||, where x:K(iﬂ , ¥ =min{\, 1 — A} and

0 < A< 1. Wealso give a reverse for the classical numerical radius power inequality w(A™) < w™(A) for any operator
A € B(H) in the case when n = 2.

. . . .1
3anponoHOBaHO AE€sKi YTOYHEHHsS Apyroi HepiBHOCTI y §||A|| < w(A) < ||All, e A € B(H). 3okpema, skmo A
€ TIMOHOPMAIBHUM, TO 3a IOMOMOrow HepiBHOCTi FOHra 3 xoHcrantoro Kamroposnua K (-, -) mosemeno, mo w(A) <

! 1 (|Alz,z) ) , ,
S‘i A+A* §7 A+A* , AC I‘ZK( ,2 77‘:m1n)\71_)\ 10§/\§1
21nf||x\|=14(x)|” [+ 1Al 2IH [+ A", ne ¢(x) > { }

(|A* |z, x
TakoXx TOBEAEHO HEPIBHICTH IS YUCIOBHX PaiycCiB, IO € 0OEPHEHOIO 0 KIACHYHOI cTemeHeBoi HepiBHOCTI w(A™) <
< w™(A) mna 6ynp-sikoro oneparopa A € B(H) y Bunaaky n = 2.

1. Introduction. Suppose that (H,(-,-)) is a complex Hilbert space and B(H) denotes the C*-
algebra of all bounded linear operators on H. For A € B(H), let w(A) and ||A| denote the
numerical radius and the usual operator norm of A, respectively. It is well-known that w(-) defines
anorm on B(H), which is equivalent to the usual operator norm || - ||. In fact, for every A € B(H),

1
SlAll = w(d) < Al (1.1)
An important inequality for w(A) is the power inequality stating that
w(A™) < w(A) (12)

for each n € N. Many authors have investigated several inequalities involving numerical radius
inequalities (see, e.g., [1, 5, 6, 8, 13, 14]). If =, y € H are arbitrary, then the angle between x and
y is defined by

Re(z, y)
COS gy = ————
Sl
or by
(2, 9)]|
COS Yy y = "=
1 gl

The following inequality for angles between two vectors was obtained by Krein [11]

Gz < Quy + Oy (1.3)

for any nonzero elements z, y, z € H. By using the representation
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Ty — inf T = inf Ty — inf T
Py /\,uelg—{o} Oxy Ae(lcn—{()} Prey ue<1cn—{0}¢ Y

and inequality (1.3), he showed that the following triangle inequality is valid:

Vay < Yoz + Uy (1.4)

for any nonzero elements z,y,z € H.

In Section 2, we first introduce some new refinements of numerical radius inequality (1.1) by
applying the Krein—Lin triangle inequality (1.3) and obtain a reverse of inequality (1.2) in the case
when n = 2. In Section 3, we obtain some refinements of inequality (1.1) by applying a refinement
of the Young inequality.

2. Some refinements of inequality (1.1) by Krein — Lin triangle inequality. In order to achieve
our goals, we need the following lemmas. The first lemma is a simple consequence of the classical
Jensen and Young inequalities.

Lemma 2.1 ([12], Lemma 2.1). Let a,b > 0 and 0 < XA < 1. Then
1

abA < Aa+ (1= A)b < [Aa” + (1 = \)b']

for any r > 1.

The second lemma is a simple consequence of the classical Jensen inequality for convex function
f(t)=1t", where r > 1.

Lemma 2.2. [f a and b are nonnegative real numbers, then

(a+b)" <2 Y a" +b")

forany r > 1.
Lemma 2.3 ([4], Lemma 2.4). Suppose that x,y € H with ||y|| = 1. Then

2 2 : 2
- = inf ||z — Ay
2 = (e, )/ = inf [l — Mol

The following lemma is known as a generalized mixed Schwarz inequality.
Lemma 2.4 ([12], Lemma 2.3). Let A € B(H) and =, y € H be two vectors.
) If 0< AL, then

(Az, y)* < (JAP 2, 2) (| AP0 Ny, y).
(ii) If f and g are nonnegative continuous functions on [0, 00) satisfying f(t)g(t) = t, then
[(Az, y)| < [[f(1AD)=[[lg(|A™)yll.

In the next result, we use some ideas of [3].
Theorem 2.1. Let A € B(H) and f, g be nonnegative continuous functions on [0, c0) satisfying
f(t)g(t) =t. Then, for r > 1,

? (4) < 57 (204 + A DI +2 fug 14 - AP ). e
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Proof. By (1.4), we get the inequality (9) of [2] as follows:

(2,21 13:2) \<x,y>\+\/1_’\<w>2\/1 1o 2)2 2

< —
=1y =0 12|21 ly[1]1=(1?

forany z, y, z € H \ {0}.
If we multiply (2.2) by ||z||||y|l||z]|?, then we deduce

[, )y, 2 < K, )2l + VllPl10? = o, D2V IR = [y, 22 @23)

Applying Lemma 2.3 for any z,y,z € H with ||z|| = 1, we obtain

2,2y 2 < ()| + fuf o = Az inf 1y — gzl (4
Put x = Az,y = A*z in (2.4) to get
(A2, 2)|* < [(A%2,2)] + inf [|42 = Az inf A"z — pz]| <
< A%z, 2)| + | Az — Az A"z — pz] (2.5)

for any z € H with ||z]| =1 and A\, € C.
On the other hand, by applying Lemma 2.4 and the AM-GM inequality, we have

(%2, 2)| < (IF (A% 2] lg(1(A%) )zl =

= V{2(142))2, 2){?(|(42)"])2, 2) <

<

(£2(14%) + g*(1(A%) D)z, 2). (2.6)

N

Applying again the AM-GM inequality, we get

Az = A2 + A%z — iz ?

1Az = A2|[ A%z — ]| < | s

(2.7)
By combining inequalities (2.5), (2.6) and (2.7), we obtain

(Az,2)|* <

< % ((F2AA%) + g (A% D)z, 2) + 1Az = Az||* + || A"z — pz]|?) <

1

S =

((F20A%) + g*(1(A%)" D)z, 2)" + (| Az = Az]|* + [|A%% = pel*)") " (by Lemma 2.1) <

1
T

((F2AA%) + g*(1(A*)" D)z, 2)" + 277 ([[ Az = Ael|*! + [|A%% — pe]|*")) " (by Lemma 2.2).

[(Az, 2)[*" < % (L2070 + g2 (A D)z, )" + 277 (| Az = Ael* + | A%z — pz] ™)) -

By taking the supremum over z € H with ||z|| = 1, we deduce
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w?(4) < zi (1£2C A% + g* (A% DI" + 27 (A = AL + | A" — pI||*"))

for any A\, u € C.
Finally, taking the infimum over A\, p € C in the inequality above and utilizing

inf ||A* — ul|| = inf ||A — || = inf ||A — A
inf [|A* = uf| = inf | A =T = nf || A= A

we obtain the result (2.1).
Theorem 2.1 is proved.
Remark2.1. In Theorem 2.1 if we choose r =1, f(t) = g(t) = Vt, we get

1
24)< = A2 A%* inf ||A— 2).
w?(4) < 5 (1142 +1(42)7]]| + 2 jnf |4 = AT]|

1
Now, suppose that s > 0 such that s < \/||A|2 - §|HA2| + [(A2)*]||, if there is A9 € C in

1
which [|A — X\oI| < s, then w(A) < \/2\\A2| + [(A2)*]|| + s2 < ||A]|, that is an improvement of
inequality (1.1) for nonnormal operators.
Recall that if A € M5(R), then ||A|| = maxi<i<y, 05, where o)s are the square root of eigen-
values of A*A, which are called the singular values of A, and w(A) for matrix of the form

_|a b fa 07,
A—[O ag] orA—[b ag] is defined by

1 1
w(A) — i‘al —+ a2’ —+ 5\/‘@1 — a2’2 + ’b|27

where a1, as, b € R.
1

= 1
1 2] and \g = 3 in Remark 2.1, we have w?(A) ~ 1.5625,
01

1 1
Al = 3.2822, [ A= ol ~ 0.5201 and 7 || A%+ |(A%)*||| = 1.5652. 1f 52 < |[A]]* - 5| 4%| +

Example2.1. By taking A =

1
+](A*)?]|| ~ 1.7170, then s < 1.3103. Hence, inequality w(A) < \/QH\AQ] + |(A2)*]]| + 52 < || 4]

provides an improvement of inequality (1.1).
Remark2.2. 1f there exists Ao € C in which |[|[A — X\oI|| < s, then by putting A = u = A\ and
by taking supremum over z € H with [|z|]| = 1 in (2.5), we deduce

w?(4) = w(A?) < A= X[ A" = XoI].

Therefore
w?(A) — w(A?) < 52

Now, if [|[4A — MI|| < s < /]| 4|2 — w(A2), we have w(A) < /w(A2) + s2 < ||A], that is an
improvement of inequality (1.1).

2 -1
0o 3
~ 6.4142, | A]|? ~ 10.6054, ||A — \oI| ~ 0.955 for s < /|| A||2 — w(A2) ~ 2.0472. Hence,
inequality w(A) < y/w(A?2) + s? < ||A|| provides an improvement of inequality (1.1).

Example2.2. By taking A = [ ] and \og = 2.5 in Remark 2.2, we have w(A?) ~
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Recall that the vector = € H is orthogonal to y € H (denote by = L y), if (x,y) = 0. Now, an
argument similar to the proof of Theorem 2.1 with the aid of Lemmas 2.1 and 2.3 gives the following
proposition.

Proposition 2.1. Let x, y, z € H with ||z|| =1 and \,p € C, a,b >0, and r > 1 such that

Jo—Asll < a, lly— pzll <o

Then
, a2r 4 b2r
(l{z, 2y, 2) = [z, )" < —5— (2.8)
In particular, if © 1y, then
. a2r +b2r
([, 2y, )" = —5— (2.9)

forany r > 1.
Proof. Since z is a unit vector, from (2.3) we have

[z, 2)II(y, 2)] = [z, 9)] < VIl = [z, 2)2VIlyl? = [y, 2)2 <

< Sl = Kz, 2) + [yl = 1y, )[*) (by AM-GM inequality) =

N

L. 2 2
€ 3) <
</{nf |z — Az||” + Hel(fl ly — pz|| ) (by Lemma 2.3)

1

<5 (= Azl + [y — pzl?) <

O |

1

> ' (by Lemma 2.1).

IN

<
2 - 2

Hence ) 9
, a””+b7‘
(z, 2y, 2)| = [z, 9))" < ———

Proposition 2.1 is proved.
Corollary2.1. Let A € B(H) and B be a nonzero self-adjoin element in B(H ), under assump-
tions of Proposition 2.1, if we choose x = Az and y = Bz with ||z|| = 1 in (2.9) yields

. a2r+b2r
({Az, 2)|[(Bz, 2)|)" < ———.

By taking supremum over z € H with ||z| = 1, we get

i, a2r +b27’ .,
w(4) < )18

provided ||[A — M || < a, ||B — pI|| < b and forany » > 1 and a, b > 0.
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Proposition 2.1 induces several inequalities as special cases, but here we only focus on the case
r=1, ie.,

2 2

a”+b
[z, )|y, 2) < —

+ [{z, )], (2.10)

whenever ||z — Az|| <a, |ly— pz|| <bwith ||z|| =1and A\, u € C.

Remark 2.3. Suppose that the assumptions of Proposition 2.1 are still valid.

As an application of inequality (2.10) the following reverse of inequality (1.2) for n = 2, i.e., an
upper bound for w?(A) — w(A?) can be obtained. In fact, by choosing z = Az and y = A*z with
|z|l = 1 and taking supremum over z € H with ||z|| = 1, we get

2

w?(A) — w(A?) <

provided [|[A — M| < a, [[A* — ul| <b.
By choosing = Az and y = A~'z with |z|| = 1, in inequality (2.10) and taking supremum
over z € H with ||z]| = 1, we have

a? + b?

K(A;z)—1<

provided [|[A — M| < a, ||A7!—pul|| <b, where K(A;z) = (Az, 2)(A712, 2) is the Kantorovich
functional.

3. Some refinements of inequality (1.1) by using Young’s inequality. In this section, we
obtain some refinements of inequality (1.1) by applying refinements of the Young inequality. The
next lemma is an additive refinement of the scalar Young inequality.

Lemma 3.1 ([9], Theorem 2.1). Ifa, b>0and 0 < X < 1, then

a0 4+ r(vVa — Vb)? < Xa+ (1 — A)b,

where r = min{\, 1 — A}.
The main result of this section reads as follows.
Theorem 3.1. If A€ B(H), r=min{\,1— A}, where 0 <\ <1, then

1—

2r N
5 A+ AT + 2r[|A].

w(A) <

Proof. Let x € H be a unit vector. Then we have

(Az, )| < A o To.2) (by Lemma 24) =
= <<|A|ZL’,$>1_>\<’A*|Z‘,Z’>>\)§ <<|A*|x,m>1—)\<|A|$’x>)\)§ <

(4141, ) A%, 2 + (A, 2) N AL, 2)Y) (by AM-GM inequality) <

N

((1 = (| Alz, 2) + M| A%z, 2) — r(V([Alz, 2) = /(| A", 2))*+

N =
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+(1 = N (| A%z, z) + M| Alz, z) — r(V/(|Alz, z) — \/<]A*|x,$>)2) (by Lemma 3.1) =

= % (<(\AI + [A* )z, z) — 2r((|A| 4 |A™])z, ) + 4r\/<|A\:U,$><]A*|:L‘,x>) ,

SO

1

[(Az, 2)| +r((|A] + A"z, ) < S((Al+ |4z, 2) + dr/([Alz, 2) ([ A%]z, 7).

|

By taking supremum over x € H with ||z|| = 1, we deduce

1—
2

2r *
w(A) < A+ [A[]| + 2r[|A[],
which is an improvement of inequality (1.1).

Theorem 3.1 is proved.
11
0 2

1
computation, we get w(A) ~ 2.2071, || A| ~ 2.2882 and §H]A] + |A*||| ~ 2.2518. Hence

Example3.1. Let A = [ ] be as in Theorem 3.1 and r = 0.1. Then by straightforward

1-—2r
2

w(A) < I[A[ + [A™[[] + 2r[[All < [|Al,

provides an improvement of inequality (1.1). In fact, 2.2071 < 2.2590 < 2.2882.

The following lemma is a multiplicative refinement of the Young inequality with the Kantorovich
constant.
Lemma 3.2 ([7], Corollary 3). Let a, b > 0. Then

(1= Na+\b> k(h,2)"a' b,

(h+1)?
4h
properties K(h,2) = K(%, 2> > 1 (h >0) and K(h,2) is increasing on [1,00) and is decreasing

on (0,1).
In [10], Kittaneh obtained the inequality

b
where 0 < A <1, r=min{\,1—-\}, h= " such that K(h,2) = for h > 0, which has

1
w(A) < Z14] + 4% G.1)

In the following theorem, we improve inequality (3.1) for hyponormal operators. Before pro-
ceeding recall that the operator A € B(H) is said to be hyponormal if A*A — AA* > 0.

Theorem 3.2. If A € B(H) is hyponormal, r = min{\,1 — A}, where 0 < \ < 1, then
1 A+ [A*]]

w(A) < .

- ianmH:l C(SC) 2

(Alz, )

T 2> is a refinement of inequality (1.1).
(|A*|z, z)

where ((z) = K (
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Proof. Let x € H be a unit vector.

[{Az, )| < \/<|A\m,x><|A*|x,m> (by Lemma 2.4) =

= ((lz‘l*lfc,96)1‘A<|A|3:,95>A)é <<|A’m’$>1—>\<A*|x’x>>\)é -

= % <(<’A*‘x7$)1_)‘<\A]x,x>>‘) + (<’Alm,$>l_/\(\A*]x,x>)‘)) < (by AM-GM inequality) <
1 1 .
Sa| ((AI:C,:@ 2)7«((1 = N)(|A |2, ) + M| Al 7))+
(|A*|z, z)’
+K (M;@ 2)7" (=X (|Alz, z) + A(|A*|z,z)) (by Lemma 3.2) =
(|A*|2, )’
1 1 §
(|A*|z, z)’
Taking supremum over x € H with ||z|| = 1, we have
1 [[[A[+ 1A

_ (|A[z,2) J\"
where ((z) = K <<|A*|IL‘,33>’ 2> )

Note that 2(|A|x, z) (|A*|z, 2) < (JA|z, 2)? + (JA*|z, 2)2, so
* 2 *
({(|Alz,z) + (|A" |2, 2))" = 4(|Alz, 2)(| 47|z, @).

Hence

((|Alz, ) + (|A%|z, z))?
(| Alz, ) ([A*[a,z) =

Therefore, K (W,Q) > 1.
(|A*|z, z)

Theorem 3.2 is proved.
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