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THE SECOND COHOMOLOGY SPACES /C(2) WITH COEFFICIENTS
IN THE SUPERSPACE OF WEIGHTED DENSITIES

MPOCTOPH JIPYTOI KOTOMOJIOI'IT K(2) 3 KOEPIIIEHTAMMU,
IO HAJIEJKATH JIO CYIIEPIIPOCTOPY 3BAKEHUX IIIJIBHOCTEM

Over the (1, 2)-dimensional supercircle, we investigate the second cohomology space associated the lie superalgebra 1C(2)
of vector fields on the supercircle S 2 with coefficients in the space of weighted densities. We explicitly give 2-cocycle
spanning these cohomology spaces.

Han (1, 2)-BUMipHHM CymepKoIOM BHBYAIOTHCS TIPOCTOPH JPYroi KOrOMOJIOTiI, siki moB’si3aui 3 cynepanredporo JIi 1C(2)
BEKTOPHHUX IIOJIB Ha cyHepkoii S 12 5 KoedilieHTaMH y MPOCTOPi 3BaXKCHNX MIIIBHOCTEH. MU SIBHO OTpHMAIH 2-KOIHKII,
II0 OXOIUTIOE I1i MTPOCTOPU KOTOMOJIOTII.

1. Introduction. Let g be a Lie algebra and M a g-module. We shall associate a cochain complex
known as the Chevalley — Eilenberg differential. The nth space of this complex will be denoted by
C"(g, M).

It is trivial if n < 0, and if n > 0, it is the space of n-linear antisymmetric mappings of g into
M : they will be called n-cochains of g with coefficients in M. The space of 0-cochains C°(g, M)
reduces to M. The differential 6" will be defined by the following formula: for ¢ € C"(g, ), the
(n + 1)-cochain §"(c) evaluated on g1, g2, ..., gn+1 € g gives

5nc(gla"'7gn+1) = Z (_1)s+tilc([gs7gt}7gl7'"7.@87"'7gt7"'7gq+1)+
1<s<t<n+1

+ Z (—1)8936(91,...,gs,...,gnJrl),
1<s<n+1

the notation g; indicates that the ith term is omitted.
We check that 6”1 o0 §" = 0, so we have a complex

0 g, M) — ... = C"L(g, M) S O(g, M) — ...

We note by H™(g, M) = kerd”/Imd"~! the quotient space. This space is called the space of
n-cohomology from g with coefficients in M. We denoted by:

Z™(g, M) = ker d,,: the space of n-cocycles,

B"™(g, M) = 3d,,—1: the space of n-coboundaries.

For M = R (or C) considered as a trivial module, we denote the cohomology in this case,
H"(g).

We shall now recall classical interpretations of cohomology spaces of low degrees:
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The space H(g, M) ~ Invy(M) :={m € M; X.m=0 VX € g, }.

The space H'(g, M) classifies derivations of g with values in M modulo inner ones. This result
is particularly useful when M = g with the adjoint representation. In this case, a derivation is a map
0: g — g such that

o([X, Y]) = [o(X), Y] = [X, o(Y)] = 0,

while an inner derivation is given by the adjoint action of some element Z € g.
The space H?(g, M) classifies extensions of Lie algebra g by M, i.e., short exact sequences of
Lie algebras

0—-M—g—g—0,

in which M is considered as an Abelian Lie algebra. We shall mainly consider two particular cases
of this situation which will be extensively studied in the sequel:

If M is a trivial g-module (typically M = R or C), H?(g, M) classifies central extensions
modulo trivial ones. Recall that a central extension of g by R produces a new Lie bracket on
§ = g ® M by setting that

[(Xv A)? (Y, U)] = ([X7 Y]v C(X7Y))'

It is trivial if the cocycle ¢ = dl is a coboundary of a 1-cochain [, in which case the map
(X, A) = (X, A —=1(X)) yields a Lie isomorphism between g and g ® M considered as a direct sum
of Lie algebras.

If M = g with the adjoint representation, then H?(g,g) classifies infinitesimal deformations
modulo trivial ones. By definition, a (formal) series

(X,Y) = ®\(X,Y) = [X, Y] + A1(X,Y) + N fo(X, V) + ...

is a deformation of Lie bracket [,] if ) is a Lie bracket for every A, i.e., is an antisymmetric bilinear
form in X, Y and satisfies the Jacobi identity. If one sets simply that

(X, Y] =[X,Y]+ (X, Y),

¢ being a 2-cochain with values in g and A being a scalar, then this bracket satisfies Jacobi identity
modulo terms of order O (A?) if and only if ¢ is a 2-cocycle. Thus, one gets what is called
an infinitesimal deformation of the bracket of g, which is trivial if ¢ is a coboundary, by which
we mean ( as in the case of central extensions) that an adequate linear isomorphism from g to
g transforms the initial bracket [,] into the deformed bracket [,]y. The infinitesimal deformation
associated to a cocycle ¢ does not always give rise to an actual deformation coinciding with the
infinitesimal deformation to order 1, i.e., such that f; = ¢, as one may check by looking inductively
for functions f2, f3,... which satisfy Jacobi’s identity to order 2, 3,... Cohomological obstructons
to prolongations of deformations are contained in H3(g, g).

The natural generalization of the Virasoro algebra is given by extensions of the Lie algebra
pect(S!) of the vector fields on the circle by modules F) of A-densities on the circle. The
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problem of classifying such extensions is equivalent to that of the calculation of the cohomo-
logy H? (Vect (S'); Fy). In [4, 5], V. Ovsienko, C. Roger and P. Marcel, calculated the space
H? (Vect (S 1) 3 F) A) and where Vect (S 1) is the algebra of smooth vector field on the circle S* and
F) is the space of A\ densities. Following V. Ovsienko and C. Roger, B. Agrebaoui, 1. Basdouri and
M. Boujelben [1] computed H3,q (K(1);F}) , where K(1) is the lie superalgebra of contact vector
fields on the supercircle S with coefficients in the space of weighted densities.

In this paper, we explicitly compute HZq (IC(2);S’§\) , where KC(2) is the lie superalgebra of
contact vector fields in S with coefficients in the spaces of weighted densities F3.

The present paper is organized as follows. After some preliminary definitions and explanation
of notation in Section 2. In Section 3, we compute the 2-cohomology space H, giﬁ (IC(2); 33) , We
classify the extensions of a Lie superalgebra K(2) by %’i

2. Preliminaries. In this section, we recall some tools pertaining to the problem of cohomology
such as weighted densities, superfunctions, contact projective vector fields on S ln

2.1. Standard contact structure on S*'™. Let SI™ be the supercircle with coordinates (z, 01, . ..

.., 0y,), where x is an even indeterminate and 61, ..., 0, are odd indeterminate: 6,0; = —6;0;. This
superspace is equipped with the standard contact structure given by the distribution D = (7;,...,7,,)
generated by the vector fields 1); = 0y, —0;0,. That is, the distribution D is the kernel of the following
1-form:

n
ap =dz+ ) _ 6:do;.
i=1

2.2. Superfunctions on S*1™. We define the geometry of the superspace S, where n € N, by
describing its associative supercommutative superalgebra of superfunctions on S*/” which we denote
by C>(S™) which is the space of functions F' of the form

F= Y fo.a@bi.. .6, where fi 4 €C>(S"). 2.1

1<i1 <...<i<n

Of course, even (respectively, odd) elements in C°° (S1I") are the functions (2.1) for which the
summation is only over even (respectively, odd) integer k. Note p(F') the parity of a homogeneous
function F. On C* (S'I") | we consider the contact bracket

(R.G) = FG = FG =5 (1 a6

. 0
where the superscript ’ stands for —.

x
2.3. Vector fields on S'1™. A vector field on S is a superderivation of the associative
supercommutative superalgebra C'*° (S 1'") . In coordinates, it can be expressed as

X =f0:+ > gi0b,
=1

where f and g; are the elements of C'*° (S 1|”) .
The superspace of all vector fields on C*° (Sl‘”) is a Lie superalgebra which we shall denote by
Vect (C°° (S””)) .
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2.4. Lie superalgebra of contact vector fields on S'I™. Consider the superspace K(n) of contact
vector fields on S, That is, K(n) is the superspace of vector fields on S 1" with respect to the
1-form «,,. The Lie superalgebra of contact vector fields is by definition

K(n) = {X € Vect (Sl‘”)‘ there exists Fxy € C (S””) such that £x,. (o) = Fozn}.

Let us define the vector fields 7; and 7; by 7; = 0y, + 6,0, 1; = Op, — 0;0,.. Then any contact vector
field on S can be written in the following explicit form:

1 n
= _ Z(_1)p(F) . . 9] 1|n
Xp=Fo, 5 (—1) ‘EI n;(F)n;, where F e€C (S ) .

The K(n) acts on S*I™ through
1 n
Lx,.(Xg) = FO. Xg + (—1)p(F)+1§ Zm(FW(G)-
i=1

The vector field X has the same parity as F. The bracket in X(n) can be written as
[(Xr, Xc| = X(pay-

The Lie superalgebra osp(2|n) is called the Lie superalgebra of the contact projective vector fields.
Thus osp(2|n) is a (n + 2|2n)-dimensional Lie superalgebra spanned by the following contact
projective vector fields:

{XZ‘7X2327X172X9¢9j7X9¢7X$9i7i7j = 17 R ,TL}.
2.5. Modules of weighted densities. ~Now, consider the 1-parameter action of K(n) on
Cc* (S””) given by the rule
X, = Xr+AF'.
We denote this /C(n)-module by §Y, the space of all weighted densities on S 1n of weight \:
= {Fay | Fec=(sm}.

The superspace §y has /C(n)-module structure defined by the Lie derivative:

S, (Fad) = (Xa +2G') (Fah,

where G’ := ?)i Obviously, KC(n) is isomorphic to §”; as K(n)-module and

-1 -1
where II is the change of parity function.
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3. Space H2 (IC(2); Si) In this paper, we study the differential cohomology spaces
H3,z (K(2);33) . That is, we consider only cochains (X, X¢) = Q(F, G)a3 where  is a diffe-
rential operator.

3.1. Main theorem. The main result of this paper is the following theorem.

Theorem 3.1. 1 3
Ka lf A:O’771a752a3a
Hig (K(2):3%) =~ 27772

0  otherwise.

The nontrivial spaces H? (/C(Q); S?\) are spanned by the following 2-cocycles:

Q(Xr, Xg) = (m(F)n2(G) — n2(F)m(G)) 0162,

Q1 (XF, Xg) = 5 (Mmn2(F)M(G) — m(F)min(G)) 6162,

N |

N (Xp, Xe) = (Finnp(G) — min(F)G + m(F)(G) + 72(F)in (G)) 6162,
Qs (Xr, Xa) = (M2(F)(G) + mn2(F)i2(G) = m(F)miz(G) = m(F)nip(G)) 6162,
Qo (Xp, Xa) = mip (F')mn (G),

Q3(Xp, Xg) = ((—1)|F| (m (F")m (G") +m2 (F") 12(G")) +

+2 (i (F') i (G") = e (") i (G)) ).
Corollary 3.1.
H3¢(K(2), K(2)) ~ 0. 3.1)

3.2. Relationship between H, (1C(2),&3) and Hi (1C(1), &) - Before proving the Theo-
rem 3.1 we present some results illustrating the relation between the cohomology space in supercircle
S and S112.

Proposition 3.1 [1].

K, if A=0,3,5,

) 13
0 otherwise.

The nontrivial space H? (IC(I); S}\) are spanned by the 2-cocycles:

1 3
n(Xe, Xe) = FG = G~ (145 (0779 ) (P (G,

w1 (Xr, Xg) = (~1)PEPE) (F'yy (G — i (F)G') o},

1
2

~ 1 1 1
5y(Xr.Xa) = (5 + 1 (14 (COPEO) ) (<10 Py (@) — m(F)G) of
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0y (Xe, Xo) = (m (F") G = (-0 'y (6")) = 561 (m(F)ms (6") + i (F) m(G)) .
5y (Xp, Xa) = (Fin (G") =i (F") &') o
w3(Xr, Xa) = (m (F")m (G") G') o,
ws(Xr, Xg) = ( ( FB @ F<4>G<3>) n g (m( F®)p, (G<2>) —m ( F(z)) m (G(4>)) _

—4m (F(3)> m (G(3)) )a?.

The following lemma gives the general form of each (2.

Lemma 3.1. The 2-cocycle ) belongs to 7> (K(Q),Si) . Up to a coboundary, the map € is
given by

AU Xp, Xg) = Z @i kM (F )M (G) 3,
,7,k,l

where a; ;1. depends only on 01, 03 and the parity of F' and G.

Proof. Every differential operator 2 can be expressed in the form
QUXp, Xg) =Y aijmB(E)0imh(G)as,

where the coefficients a; jx; are arbitrary function. By using the 2-cocycle equation, we can show

0
that 2 a; jk; = 0. The dependence on the parity of F' and G' comes from the fact that € is

skew-symmetric:
azgkl(F G) ( )EZ](FG)azjkl(F G)

where
gi(F,G) = ij(p(F) + 1)(p(G) + 1) + p(F)p(G) + 1.

Lemma 3.1 is proved.

Now, to prove Theorem 3.1, we also need to compute the cohomology space vanishing on K(1).
We will be interested in cohomology space vanishing on /C(1), that is, we assume

QX,Y)=0, if X,Y eK(1).
Therefore, the relevant cohomology space is
H?iiﬁ (IC(2)> K(l), Sg\) .

Theorem 3.2. The space

P
Hiig (K(2),K(1),33) Z{K’ v .2’ (3.2)

0  otherwise.
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Proof. Let Q a 2-cocycle of K(2) vanishing on K(1). The expressions of {2 are given by
Lemma 3.1. We check with “MATHEMATICA” that the 2-cocycle condition has the solution

0 i\ #2,

Q(XFa XG) = .
vinie (F') iz (G') o3, if A =2,

where v is constant. Assume that the map € is trivial 2-cocycle vanishing on K(1). Thus, there

exists an even operator b: K(2) — F3, given by

b(XF) = (Z Kk (2,01, 02)mmne (F(k)) + Zul($,91,92)F(l)) a3,
; .

where the coefficients xy(z, 01, 62) and py(x, 61, 02) are arbitrary such that  is equal to §(b), that is
AXp, Xg) = (1P gL (b(Xq))—
—(—)PHEED LR (b(XF)) — b([XF, X)) (3.3)

The condition (3.3) implies that its coefficients are constant.

We check with “MATHEMATICA” that the condition (3.3) has no solution. We can see that
the expression (3.2) never appears on the right-hand side of (3.3). This is a contradiction with our
assumption.

Theorem 3.2 is proved.

Proof of Theorem 3.1. Consider a 2-cocycles 2 € Zgiﬂc (IC(Q); Sg\) M Qicnyeic(n) 18 trivial then
the 2-cocycle (2 is completely described by Theorem 3.2. Thus, assume that x(1)ex (1) 1s nontrivial.
Of course, by considering Proposition 3.1, we deduce that nontrivial space Hgﬁﬁ« (IC (2); 3%\) only can

-1 1 359

appear if A € { 0,-,1

5 Vs lhgg 2,375} . The K(1)-isomorphism:

i (K15 83) = B (£0):83) © B (T (53,4)) -

Together with Proposition 3.1 that describes up to a coboundary and up to a scalar factor the restric-
tion of any 2-cocycle € to (1). In inception, we consider separately the even and odd cases. Even
cohomology spaces only can appear if A € {0,1,3,5} and odd cohomology spaces only can appear

113509
if)\e{,,,,}.

In each case, the restriction of 2 to (1) is a linear combination of corresponding 2-cocycles
given in Proposition 3.1. First, the operators €2 labeled by semi-integer are odd and given by

UXp, X)) = > a5 j i (F)5(G) s,
Z'7‘j7I§7l

where i + j + k + 1 € {1,3} and the coefficient a;;i; are arbitrary functions independent on the
variable x, but they are depending on 6 and parity of F' and G. By using “MATHEMATICA”, we
will investigate the dimension of the space of operators that satisfy the 2-cocycle condition:

S()(Xp, Xa, Xp) = (D" Xp.Q(Xg, Xg) — (—DPEUHPED X 0 (X p, Xi)+
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—|—(—1)p(H)(1+p(G)+p(F))XH.Q(XF,XG) — ([ Xp, Xa], Xu)+

H(=D)PEOPIO([Xp, Xy), Xg) — (—1)PPPOPIO([ X, Xy, Xp) =0,  (34)
where Xp.Q(Xp, Xy) = €%, (UXq, Xg)) and F,G, H € > (S'7?).

The number of variables generating any 2-cocycle is much smaller than the number of equations
coming out from the 2-cocycle condition for particular values of a;;r;. We have:

1
For A = —:
or 5

Therefore, by a direct computation, we can see that the 2-cocycle condition is always satisfied
with particular values:

a1000 = 0, agio0 =0, apo10 =0, agoo1 =0,

1 1
ano = 5 0102, aii01 =0, a1 =0, a1 = —3 6102.
We will study all trivial 2-cocycles, namely, operators of the form §b, where b is a linear operator
given by
b(XF) = (v mna(F) + p F)ag,

A direct computation proves that
H(Xp, Xa) = 5 (1 (312001 (2) + 32(2)ga() + g0() o) ~ folw)h()) —

—61 (312(2)g2(2) — 3f2(2)g12(2) — 301 (2) fo(x) + 3go(w) () + (2)gb(x) — fola)gh (2))—
— 102 (312(2)91(2) — 31 (@)g12(2) — 692(2) f6(2) — go(2)f3() + 61>()gh(x) — folx)gh(x)) +
010 (912() () + 200(2) £ (2) — 201 (2) fy()+
T90(2) fla() — fra)gb () + 22(2)g] (2) — 211 (@)gh () — folr) o)) +
11(3g12.5(2) + 202(2) £ (2) — 201 (2) fo(2) — B Fro(@)ghy + Aa(2)g} (2) — 41 (2)gh(2)) +
1101 (— g12(2) £ (@) + 201(2) fla () + f3()gh ()~
— o)} () — Fo(x)gh(x) — 4F1(2)gha(w) — dga() () + 4f2(2) ) (2) +
10— 912(2) f3() + Ag2(2) fla ) — F(2)h() + Fo)dh () +
+3£12(2)95(2) — A1 (@)gha() + 201 (2) () = 2Fa)gfa(w) +
1610 (— gu2(@) fla ) — 21 ()6 () — 203(@)gh(x) + Fualr)hal) + gb(a) () +
+2g1(2) f{(2) = 92(2) 5 () — ()95 () — 21(2)g} () — 2a(2)g} (1)) ).

It is now easy to check that the equation €2 — b = 0 has no solutions. So the 2-cocycle is nontrivial
and dim H3,4(K(2); §3) = dim Z3,4 (K(2); §3) . Hence, the cohomology space is one-dimensional.
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3
For A = —:
or 5

Therefore, by a direct computation, we can see that the 2-cocycle condition is always satisfied
with particular values:

a1000 = 0, agio0 =0, apo10 =0, agoo1 =0,
aiiio = 0hb2, ari01 = 0162, ap111 = —b0162, a1 = —016s.

Let us study the triviality of this 2-cocycle. We can see that any coboundary 6b(Xp, X) can be
expressed as follows:

3

3 fo(x)gé(x)> n

W(Xr Xa) = (§ A e) + 5 Alhgae) + § w(o)foe) - 5

81 (= fal@)n(o) + 5 fole)ona(o) + a0 (0) ol (5) — Son(o) T (o) +

A+ @nl(@)) s (3 fl@n () + 5 A + 06 o)+

3 @) 3(e) — (o) + 5 o(o)ahle)) + wtatn (5 ) o) + § o) o)+

+3 ala)dh(o) + Fole)gh (o) ~ Fl)dh(a) — 5 fleldla) ) +

1 (§ 000 50 + ) i (0) = () f3(0) = Fa(ghle) + 262l @) ~ 2 (2)gh(a) ) +

+u92<;glz(w)fé(fc)+2gz(fr:)f{2(x)Zf{(w) ) + 5 Fola)eh o) + 5 Fiale)gh(a)-

—f2(2)g912(7) + g1(2) fo (2) — f1($)96’(@> + pb1 <—g g12(z) f1(@) + g1(2) fla(2)+

+ fa(x)go(x) + 5 f12( )91 (2 )—2f6(w)g’z($)—2f1(f6)giz(x)—292(I)f6'(f6)+2f2(w)96’($)> +

bt (5 ma(o)fiale) — 35100k (0) — 3 ~ 5 Fa(olatale) — 5 950 o)~

2

1
—91(@) [ (z) = g2(2) f2 () + 5 fo(@)go () — fi(w)gi(w) fz(@%’(l‘)) :
So, in the same way as before, the equation {2 — éb = 0 has no solutions. So the 2-cocycle is
nontrivial and dim H3,; (K(2);33) = dim Z3,4 (K(2); 33 ) . We deduce that the cohomology space

is one-dimensional.
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-1
2

l\D\Cﬂ
N | ©

For A € { } , the equation (3.4) has no solutions. Then

Hiip (K(2),3%) =~ 0.
By applying the 2-cocycles equation to €2, using “MATHEMATICA”, we deduce the expressions

of Q. To be more precise, we get

S (F) (@)~ (F)iim () 0105 i A=

(MN2(F)71(G) + M2 (F)n2(G) — i (F)nn2(G) — 72(F)mn2(G)) 6162, if X =

)

Q0=

M\oo 1\9\»—\

Next, the proof here is the same as in odd 2-cocycle. The operators {2 labeled by integer are even
and given by

UXF, Xa) =Y a; ik B(F)Th(G)as,
,5,k,l

where i + j + k + 1 € {0,2,4} and the coefficient a;;;; are arbitrary functions independent on the
variable z, but they are depending on 6 and the parity of F' and G.
Using “MATHEMATICA”, this map satisfies the 2-cocycles equation

§()(Xp, Xa, Xn) = XpQ(Xa, Xg) — (—DPEPE X0 Q(Xp, Xg)+
+(=1)PEEOPE) Xy (X, Xa) — W[ Xr, Xg], Xu)+
+(=D)POPIO( X, Xy, Xa) — (=1)PEV IO (X6, Xy, Xp) = 0, (3.5)
where F, G, H € C* (51‘2) .
For A = 0:

Therefore, by a direct computation, we can see that the 2-cocycle condition is always satisfied
with particular values:

agooo = 0, arip0 =0, ago11 =0, aipo1 = 016e,

apiio = —b6hb2, ai010 =0, aogio1 =0, ap111 =0, a1 =0.

On the other hand, we can see that the coboundary 6b(Xr, X) can be expressed as follows:

W(Xr Xa) = (~3 @ (e) - 3 Plw)oalo) ) +
01 (5 Fal@)onlo) + 5 2l@on(o) - § @@+ 5 hi)h(@)) +
ot (5 Fe@)n(a) + 5 Fia(e) — 3020 (0 + 5 Falolba) ) +

018 (5 () fi(0) + 3 (o)) + 3 B0k (o) — 5 Fdh(o) ) +
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+1u (912(2) fo(2) — fra(2)gp(2) + fa(2)di () — fi(x)gh(x)) +
118 (—ga @) o) + Fra(@)gh(x) + 2Fala)gho(@) + 201 (@) (@) — 251 (@) () +
by (~g1 () fia(@) — Fra(@)gh (@) + f1(2)gha(@) — F(@)g12(x) — go() (@) + Folw)gl (@) +
10z (~g12(@) fla() + F1(2)g4 (2) + 23(0)gh () + Fra(@)ghala) + g () fi (2)+
201 () 1 (&) + 22(2) f3 (2) — f5(@)gh (@) + 21 (2)g (@) + 2fa(w)g} ()
So, the cohomology space is one-dimensional since the equation 2 — §b = 0 has no solutions.
Hence, the 2-cocycle is nontrivial and dim H3,5 (K(2); §3) = dim Z3,4 (K(2); §3) = 1.
For A = 1:
Therefore, by a direct computation, we can see that the 2-cocycle condition is always satisfied
with particular values:
apooo = 0, aipo = —0102, ago1r = 0162, aion = 0162,
aorio = 6162, aioio =0, apior =0, ann =0.

By a direct computation, we get

W(Xr Xe) = (—5 A@n (o) - 5 ole)n(o) + mle)fi(a) ~ o)) +
01 (5 Fal@)on(o) + 5 Fala)ona(o) + 5 (o) o)+
b))~ 5 Al@)oh(o) — foe)gh(@)) +
ot (5 Fr@)n(o) + 5 FiDhon() + 5 o) o)+

Fan()f3(e) =  FDe) ~ ollsh(o)) +

018 (g02@) o) + 5 020 (2) — 5 @) (o) + 0l o)~
/ 3 / 3 / /
~fiale)gb(a) + § £l 0) = § Fie) ~ (o2 (@) +

i (2012(2) f (@) — 2f12(2)g0(2) + fo(@)gi (@) — fi(@)ga(@)) +
i (912(2) f5(2) — g2(2) fla (@) — fi()g0(x) + fo(2)gh (2)+
+2f2(2)g12(x) + 201 (2) o (x) — 2f1(2) g6 (%)) + 11 (912(2) f1 () — g1(2) fia(@)+
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+f3(x)g0(x) — 2f12(2) g1 (x) — f(x)g5(x) + f1(x)dha(x) — go(2) fo (x) + fa(z)gh () +
+1u6102 (21 (2)g5(x) + 2f5(x)g) (x) + 291 (x) f1 (2)+
+2g2(x) fy () + 2f1(x) g7 (x) + 2f2(x) g5 (x)) -

Hence, we deduce that the cohomology space is one-dimensional since the equation 2 — §b =0
has no solutions. So, the 2-cocycle is nontrivial and dim H3; (K(2); §3) = dim Z3; (K(2); 33) -

For A = 3, the equation (3.5) has a single solution €2. It is now easy to check that the equa-
tion 2 — db = 0 has no solutions. So the 2-cocycle is nontrivial and dim H?iiﬁf (IC(Q);S%) =
= dim Z3q (K(2):33) = 1.

For A = 5, the equation (3.5) has no solutions. Then

Hgliff (’C(z)vgg) ~ 0.

By using “MATHEMATICA”, that the condition of 2-cocycle has solutions, we deduce the ex-
pressions of 2. To be more precise, we get

(M (F)72(G) — n2(F)n1(G)) 0162, if A=0,
Q= q (Fmn(G) —mn(F)G + m(F)5(G) + 02(F)m(G)) 0102, if A=1,
(-)IF(M(F, @) + 2(N(F,Q))), if \=3,

where
M(F,G) = (F") i (G") + 72 (F") 712 (G")
N(F,G) = mip (F') i (G") — miz (F") i (G') -
Theorem 3.1 is proved.
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