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REMARKS ON NUMBER THEORY
OVER ADDITIVE ARITHMETICAL SEMIGROUPS

3AYBAKEHHS /1O TEOPII UUCEJI
A AAUTUBHUX APUCPMETHYHUX HAIIIBI'PYII

We deal with additive arithmetical semigroups and present old and new proofs for the distribution of zeros of the
corresponding ¢ -functions. We use these results to prove prime number theorems and a Selberg formula for such semigroups.

PosnisiHyTO 10AATKOBI apu(METHYHI HAIBrpyNH 1 HABEICHO CTapi Ta HOBI IOBEJECHHS JUIS PO3MOILUTY HYIIB BiIIOBIqHUX (-
¢dynukmiit. i pe3yasraTd BHKOPHCTAHO [UIs TOBEACHHS TEOpEM MPOCTHX 4rcen i popmynu Cenpdepra s TaKuX HAIliBIPYIL.

1. Introduction. Abstract analytic number theory has arisen first as a generalization

of the classical number theory on the (semigroup) N of natural numbers with the special emphasis
on the derivation of the famous Prime Number Theorem: 1f 7(x) denotes the total number of positive

rational primes < z, then 7(x) ~ as & — 00,

ogx
and

of Landau’s classical Prime Ideal Theorem, which extends the Prime Number Theorem to the
(semigroup) G'i of integral ideals in an algebraic number field K.

There are a large number of mathematical systems, particularly ones arising in abstract algebra,
which have elementary “unique factorization” properties analogous to those of the positive integers.

In the case of many of these systems there is an additional property, which make them more
“arithmetical” in a sense, and more treatable by techniques of classical number theory. This property
comes from the existence of a function measuring the “size” of an individual object (usually the
object’s cardinality or “degree” in some sense) with the essential attribute that there are only a finite
number of inequivalent objects whose “size” does not exceed any chosen bound.

Motivated by such systems Knopfmacher [17] introduced the formal concept of an additive
arithmetical semigroup, which he defined to be a commutative semigroup G with an (additive) degree
mapping on GG. To be more precise, let G be a free commutative semigroup with identity element
1, generated by a countable set P of primes and admitting an integer valued degree mapping O :
G — N U {0} with the properties

(i) 9(1) =0 and 9(p) > 0 forall p € P,

(ii) d(ab) = 9(a) + O(b) for all a,b € G,

(iii) the total number G(n) of elements a € G of degree d(a) = n is finite for each n > 0.
Then (G, 0) is called an additive arithmetical semigroup. Obviously, G(0) = 1 and G is countable.
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372 K.-H. INDLEKOFER, E. KAYA

Let
m(n) :=#{p € P:d(p) =n}

denote the total number of primes of degree n in G. If we consider G(n) together with its associated

enumeration function

F(y):=1+) G(n)y",
n=1

then the identity, at least in the formal sense,

Fly)=1+) Gmy" =[] a-y) ™"
n=1

n=1
holds.
F(y) is called the generating function (or zeta function) of the additive arithmetical semigroup G.
Remark 1. 1t is worthwhile to mention here some properties of the sequences v(n), 5(n) € R,
which are formally related by

1+ )y = —y)=F™
n=1

n=1

and which have been used in [14, p. 448]:
B(n)€Z forall neN&~y(n)eZ forall neN (1.1)
and
B(n) >0 forall neN=~(n)>pg(n) forall neN. (1.2)

Condition (1.2) is obvious. Concerning (1.1) we assume that v(n) is integer-valued for all n € N.
Then

o0

1+ Ay =1 —y) "D +ay’+..)=1+B1)y+...

n=1

and B(1) € Z. Now, assume that k£ € N\ {1} is the smallest number such that 3(k) ¢ Z. Then
00 k—1
(1 + Z’Y(n)y”) (H (1- ym)“”’”) =
n=1 m=1
=1—y")PPPA+y T ) =148k +. ... (1.3)

The left-hand side of (1.3) is a power series with integer coefficients, and, thus, §(k) € Z. This
contradiction proves 3(n) € Z for all n € N. The implication of the opposite direction in (1.1) is
obvious. A corresponding result for the formal representation

L+ ymy" = [T+ e(n)y™)
n=1 n=1

may be found in [15] (Proposition 1).
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The following examples show that degree functions arise in various forms.

Example 1 (monic polynomials over GF(q)). A simple example of an additive arithmetical
semigroup is provided by the multiplicative semigroup G, of all monic polynomials in one inde-
terminate X over the finite field GF'(q) with ¢ elements and with (a) = deg(a) for a € G, where
deg(a) denotes the degree of the polynomial a. Here G(n) = ¢", and the generating function may
be written as

F(y) — anyn _ H (1 _ yn)*ﬂ'q(n) ,
n=0

n=1

and

mq(n) = % > ()"

rin

can be deduced as an algebraic consequence of the Euler product for F'(y).
Example 2 (multisets). Let P be a finite or denumerable set. Following Flajolet and Sedgewick
[6], we use the notation

SEQ(P) :={(p1,....m): 1 >0, p; € P, i=1,...,1},

where the element for [ = 0 corresponds to the identity element 1 and the size |a| of an object
a € SEQ(P) is a nonnegative integer and is to be taken as the sum of the sizes of its components,

a:(pl,...,pl) > ]a\ = \pﬂ—i—...—l—\pl!.
Then we define the multiset M .SET(P) as the quotient
MSET(P):= SEQ(P)/R,

where the equivalence relation R is defined by (p1,...,p.)R(q1,...,qr) if there exists some arbi-
trary permutation 7 of 1,...,r such that ¢; = p.(;) for all j (see [6, p. 26]). Obviously, a multiset
MSET(P) (together with a size function |- |) is nothing else but an additive arithmetical semigroup
G with G = MSET(P), where P denotes the set of primes, and the degree d(p) is given by the
size [p|. Then 7(n) is the number of objects in P that have size n.

Example 3 (partitions). As a special example of a multiset we choose P = N with 9(j) = j
for je N. If a = (ny,...,n;) € MSET(N), then 0(a) = n; + ...+ n;. Obviously,

m(n) =#{pe P: 0(p) =n} =1
and
G(n) = p(n) := number of partitions of n.

The generating function F'(y) is given by

Fly)=14> pmy" ==y
n=1 n=1

and converges for |y| < 1.
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Example 4 (monic polynomials over GF'(q) in several indeterminates). For an integer k > 2,
let G, be the multiplicative semigroup of all monic polynomials in k indeterminates Xi,..., X}
over a finite field GF'(q), where O(f) is the degree of f € G, 4. The prime elements are the (monic)
irreducible polynomials in G}, 4. Carlitz [4] has proven that

nli_)ngog% =1. (1.4)

This shows, that “almost all” elements of G, , are primes in the sense that G(n) > 0 for sufficiently

large n and 7(n) ~ G(n) as n — oo. Further, by a result of Wright (see Theorem 3 in [20]), (1.4)
implies that the generating function

F(y) =1+ Z G(n)y" = H (1—ym)~ ™"
n=1

n=1

diverges for all y € C.
In order to develop an arithmetical theory we assume that

G(n) < ¢"n® withsome ¢>1, p€R,

so that F'(y) is holomorphic for |y| < ¢~!. The logarithmic derivate of F is given by

F'ly)  ~ e
)~ > <Zd7r(d)>y L (1.5)

n=1 \ djn
Putting
An) = dn(d),
dln
gives
Fly)=1+ iG(n)y” = exp (i )\(nn) ")
n=1 n=1

A straightforward calculation (see [9, p. 86]) shows that

A(n) =nm(n) + O(nq"/2 (g)glog n)

An abstract prime number theorem (for additive arithmetical semigroups) is a theorem about the
asymptotic behavior of 7(n) and A(n), respectively.

Further, we shall concentrate on additive arithmetical semigroups whose zeta function F' can be
written in the form

H(y)

——>>—  withsome § >0
(1—qy)° ’

F(y) =
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REMARKS ON NUMBER THEORY OVER ADDITIVE ARITHMETICAL SEMIGROUPS 375

where H(y) is holomorphic for |y| < ¢! and continuous for |y| < ¢! and H(¢™!) # 0. By a

result of Indlekofer [11] this implies H(q~!) > 0.
F(y) has no zeros in the disk {y € C: |y| < ¢~'} but may have zeros on the circle {y € C:
ly| = ¢~ 1}. If g~ 1e?™ is a zero of F(y), the number

a(t) :=sup {a: limsup(q—' — r)"%|F(re?™)| < oo} (1.6)
r/qt

or, equivalently, following Beurling [3],

1 F 2mit
a(t) := liminf log | F(re™™)|

1.7
rogt log(g! —7) 47

is called, by definition, the order of the zero q~'e*™,

In this paper we deal with the “total number” of zeros of F'(y), which is the key to the investi-
gation of the abstract prime number theorem. In the case 6 = 1, we assume in addition, that H (y)
is holomorphic for |y| < R, where R > ¢~!. In the general case § > 0, we only assume, that H (y)

1 and continuous for |y| < ¢~!, and H(¢~ ') > 0.

is holomorphic for |y| < ¢~

As applications we present several abstract prime number theorems and a corresponding Selberg
formula.

Remark 2. In several papers we have investigated the mean behavior of additive and multi-
plicative functions on additive arithmetical semigroups (see [1, 2, 10, 16]). In this context it is
recommendable, to deal with probabilistic aspects, as it has been done, for example, in [12] and [13]
for functions defined on the (multiplicative) semigroup N of natural numbers.

2. Zeros of the -function. We put

H(y)
(1—qy)?’

and consider the special case § = 1 separately from the general case o > 0.

2.1. The case 6 = 1. When Knopfmacher [17] introduced the concept of the additive arithmeti-
cal semigroup his investigations are based on the following axiom.

Axiom A#. There exist constants A > 0, ¢ > 1 and v with 0 < v < 1 (all depending on G),
such that

F(y) = 5> 0, 2.1)

G(n)=A¢d"+0(q""™) as n— .

If G satisfies Axiom A7, then the generating function

1

is holomorphic in the disc |y| < ¢~ up to a pole of order one at y = ¢~ ", and we get

A

F(y)zl_qy

+ Hi(y),
where
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H, (y) = Z rny"”
n=0
with
rn = G(n) — Ag"
Putting
H(y) == A+ (1 -qy)H1(y),
gives
H(y)
F =
) =1— ”

with H(0) =1 and H(q™') = A. H and H; are holomorphic for |y| < ¢~*.
Chapter 8 of [17] deals with the abstract prime number theorem:
If the additive arithmetical semigroup G satisfies Axiom A% | then

n

n q
)\(’I’L):q +O<na—l>’ n — oo,

or, equivalently,
q" q"
m(n) = o +O<na>’ n — 0o,

is true for any o > 1.

Note that this result is only valid if F(—¢~!) # 0. In [14], Indlekofer, Manstavi¢ius and War-
limont gave (in a more general setting) much sharper results valid also in the case F(—¢~') = 0.

We write y = re?™ and assume that there is some R > ¢~! such that H(y) is holomorphic for
r < Rand H(qg7') # 0. If H(y) # 0 for |y| < ¢!, then there exists some 7, ¢! < r < R, such
that H(y) # 0 for |y| < r. This is contained in the following theorem.

Theorem 1 ([14], Theorem 1). If H(y) # 0 for |y| = q 1, then there exists 0 < ¥ < 1 such
that H (y) # 0 for |y| < ¢7".

If F(y) has zeros on the circle {y € C: |y| = ¢!}, then the following two theorems hold.

Theorem 2 ([14], Theorem 1). If F(y) has zeros of modulus q~", then F' has exactly one zero
in the disk {y € C: |y| < R}. It is located at y = —q~' and has order 1.

Theorem 3 ([14], Theorem 2). Asssume R > q~Y/2. If F(—q~') = 0 we have

F(r)F(—r)> (1- q%r)_l for v Nq V2 (2.2)
The main part of the proof of Theorem 3 is to show that
F(r)F(=r) > F(r?) for r /g /2 (2.3)

from which the assertion (2.2) follows immediately since H(q~') > 0. Furthermore, (2.3) implies
directly the following corollary.
Corollary 1 ([14], Corollary 2). Assume R > ¢ Y2, If

liminf (1 — r¢*/?)F(r)F(—r) <0,
/g2

then F(y) has no zeros for r = q .
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The investigation continued with the restriction that H(y) is holomorphic for |y| < ¢! and
continuous for |y| < ¢~!. By a result in [11] this implies H(¢~!) > 0. Zhang required assumptions
on the coefficients of the (-function (see [21]) whereas Indlekofer assumed in [8] a specific boundary
behavior of H. This reads as the following axiom.
Axiom Ay [8]. H(y) is continuous for |y| < q=*, H'(y) is bounded for |y| < q~'.

Axiom A; is much less restricted than Axiom A# and seems to be the weakest condition known
n

today which ensures a Chebyshev type upper estimate 7(n) < % Some conclusions which can be
n

derived from Axioam A; without appealing to Axiom A# are given in the following theorem.
Theorem 4 ([8], Theorem 1). If Axiom Ay holds, then either H(y) # 0 for every |y| < ¢~ or

_ H)
1+ qy

1

fy):

defines a function f, which is holomorphic for |y| < q~* and continuous and different from zero for
all [y < q=".
2.2. The case § > 0. First, we prove the following theorem.

Theorem 5. Let hy)
Y

g\Y) = —— 5>

) (1-y)°

be holomorphic and different from zero for |y| < 1. Assume that h(y) is continuous for |y| < 1 and
h(1) > 0. Also assume that

0 >0,

oo
logg(y) = Y amy™, |yl <1, (2.4)
m=1
where the coefficients a,, are nonnegative. Let 0 < t1 < ... < t, < 1 be given. Then
n o f .
1 2mit;
Jim inf 12819 5 (2.5)

oo log(1 — 1)

Remark 3. This theorem has been proven by Zhang in [21] (Theorem 4.2). Here we give a
different proof which is shorter and uses ideas from Beurling’s paper [3].
Proof of Theorem 5. We start with the identity (0 < r < 1)

p 2
1—
| | ! = E . E plvilt vl cos(viyr + ...+ pYp) (2.6)

1 — 2rcosy; + r2
i=1 Yi + V1 E€Z vp€EZL

(cf. [3, p. 281]). Put

v:=(v,...,1p) € ZP,
p
o)l = lwil
i=1
and let 0 < t; < ... < t, < 1. Consider a maximal subset of elements, which are linearly inde-
pendent over Q, of the set {¢1,...,%,}. Then there exist si,...,s,, which are linearly independent
over Q, such that
P
tj :chi3i7 j: 1,...,77,, (2.7)
i=1
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with ¢j; € Z, j = 1,...,n, ¢ = 1,...,p. If the ¢1,...,%, are linearly independent then choose
sj=tj, j=1,...,n, and

Put in (2.6)
Yi = SiY, Zzla’p
Then for every 0,0 < p < 1, there exists Ny = Ny(p), such that for every N > Nj

1<_
T < N Y gl < <1+§>

lvll>N vELP
vezZP
and, by (2.6),
0< Py):= Y d“lcos(v,s)y, (2.8)

lvl<N
where
(V,8) =v181 + ...+ 1pSp.

Let y = 2mm with m € N. We multiply (2.8) by a,,r" and sum over m. Then, by (2.4), for
0<r<l,

0< Y dhogg(r)+ Y olllog|g(re®™ ).

[lvll<N lvl <N
(v,s)ez (v,8) ¢
It follows that N
Ti(V,s
S v log [g(re )| < 3 o logg(r) 2.9)
log(1 —7) 1
vll<N lvli<N log
(v,5)22 (vis)ez 1—r
Now, define
To:={veZ’: (v,s) €L}
and, for j =1,...,n,

Tj:={veZl: (v,s)+t; € Z}.
Obviously, putting v; = (¢j1,. .., Cjp),
T ={v+v;:v el

Note that Ty, 11, . .., T, are mutually disjoint. From (2.9) we have

Z Z vl log|g )’ + Z QHV” 10g|g(r6271'i<u,8>)| < Z Q“V” logg(?“) '
log(1 ) log(1—7r) — I
j=1 IvlI<N lv<N vl <N log
veT; ugTOU(UJ L T]) vETy 1—
Note that |
lim ogg(lr) =0
r—1-
log T
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and

1 27i(v,s)
lim inf og lg(re )

>0
r—1- log(l—7r) —

if (v, s) ¢ Z. This implies, letting N — oo,

im inf 0819(re | vl o
th inf —————~ log(1 Z <4 Z 0
j=1 veTy

Now, either
To = {0}

or there exists vg € ZP such that

To={v=tvy:tel}.

379

(2.10)

@2.11)

For the proof of (2.11), assume that, for some v € Ty, (v,s) = a € Z and a # 0. Then the set
A:={a:0<a=(v,s) for some v € Ty} is non-empty and has a minimal element ay := min{a:
a € A} with ag = (vo, s) for some (unique) vo € ZP. Since si,..., s, are linearly independent,

v € Ty if and only if there exist ¢ € Z such that v = tvy.
If Ty = {0}, then, by (2.10),

thlnf log |g(re*™™) oll¥ill < §p,
r—1-  log(1l — r)

and letting o — 1~ gives the assertion (2.5) of Theorem 5. In the case (2.11) we put

S = 3 = 3 el

veTy teZ
E E ||V|| — E QIIVﬁtVOH
veT; teZ

and arrive at
— nllvoll — _ lvoll llvol|
D 0= 1”%} 1_Quuo||(1 gl +2¢11).
n

In the same way we obtain

ol Zo < Zj < o vl 207 j=1,...,n,
2,

Eﬂf:l-
0

Then (2.14) proves, by (2.10), (2.12) and (2.13), the assertion of Theorem 5.

which implies

We apply Theorem 5 to the (-function F(y). Observe that, if y = ¢~ 1e?™ 0 < t <

1,—2mit

(2.12)

(2.13)

(2.14)

1 IS a
27

zero of F(y), then y = ¢ e~ is a zero of F'(y), too. By using the notations (1.6) and (1.7),

respectively, we arrive at the following theorem.
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Theorem 6. Let the (-function F(y) of G be given by (2.1), where H(y) is holomorphic for
ly| < ¢~ and continuous for |y| < ¢=1, and H(q~*) = 0. Then

a<;>+ S a(t) <6

0<t<3

2 ) a(t)<s

o<t<i

or

according as y = q~ ' is or is not a zero of F(y).

Theorem 7. Let k € N be defined by

Ol+1, if 6¢N,
0, if deN.

k=

Assume that H®) (y) = O(1) for |y| < ¢~*. Then the order o of a zero of H is a positive integer.
Proof. All derivatives HY)(y) with j < k are continuous for |y| < ¢~'. Hence, we obtain by
Taylor’s formula for 0 < r < ¢!

E

—1
H reQmﬂ _ iH(n) q—1627ri19 627rim9 r— q—l ny
n!

1

3
I

1

(k—1)!
q

+

/ H® (162709) 27k9 (1. _ k=1 gy, (2.15)
1

1
The last term of (2.15) can be estimated by O (M(r - ql)k> :

Suppose that « is not an integer, i.e.,
m-—1l<a<m<k.
Then by (2.15), H) (g~ 1e?™) = 0 for j < m and

H(r€27ri19) _ -1 m—ao’ -1
m = O ((q — 'F) > as 1 —q

for every o/, a < o/ < m, which contradicts the assumption on «. Therefore, o must be a positive
integer.

By Theorems 6 and 7 we obtain the following corollaries.

Corollary?2. Let § =1 and H'(y) = O(1) for |y| < q~*. Then H(y) has either no zeros on the

L or exactly one zero y = —q~" of order one.

circle |y| = q~
Corollary 2 is contained in Theorem 4.
Corollary3. Let 0 < § < 1 and H'(y) = O(1) for |y| < q~'. Then H(y) has no zeros on the

circle |y| = ¢ 1.
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REMARKS ON NUMBER THEORY OVER ADDITIVE ARITHMETICAL SEMIGROUPS 381

Corollary4. Let 1 < 6 < 2 and H"(y) = O(1) for |y| < q~'. Then H(y) has either no zeros
on the circle |y| = q~*, or exactly one zero y = —q~ ' of order one.

The condition H'(y) = O(1) implies that a(v) > 1 if y = ¢~ 1e2™ is a zero of H(y). Thus the
following result holds.

Corollary5. Let 1 < § < 2 and H'(y) = O(1) for |y| < q~*. Then H(y) has either no zeros
on the circle |y| = q~*, or exactly one zero y = —q~" of order < 4.

The following example could be considered in the context of Theorem 6 and Corollary 3, whereas
Example 6 illuminates the strength of the condition in Corollary 2.

Example 5. Let rq, s1,79, s2 be positive integers such that § = Z—l, o= 2—2 EQwithd<a<

1 2
< 0. Consider ¢ = msy89, where m > QL + 1 holds. Put
T1582 — S17T2
An) =q¢"(0+ (—1)"“04), n=12,....

Then the A(n)’s are all positive. Furthermore, 7(1) = A\(1) > 0 and, for n > 2,

wn) = XA @n(5) 2 A0 - ¥ 2@ 2

dln 1<d<2

w|3

>q"(0—a)—26 Z quq"(éfa)725qq =

1<d<? ¢-1
nf n 20q
=q>2 q2(5—oz)—q_71 > —a)(g—1)—26 > 0. (2.16)

Fly) = l—qy 1l+gy
and (1 Jo
+qy 1
F y - 9 ?J <q 9
(y) =g lyl

where 0 < a < §. Then G(0) =1 and

" (k+6—1
mm=w2< )Qfg,n:mww
—\ -1

k

are positive integers. Therefore, by Remark 1 and (2.16), 7(n) € N.
Example 6. This example is motivated by Example 6.5 of [22]. Consider

A(n)=(1—cosnb)q", n=12,..., (2.17)

4
where ¢ = 2- 5% and cos = —. Since

RN G EN(AreE
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1
o (3" - (Z) 3242 4 ) if n isodd,

1
SO () ) e

we see that sinnf # 0. Thus 1 — cosnf > 0. Furthermore, we have

1 . 1
1—cosn9:5—n(5”—Re(4+32)")2— n=12....

5n’
Since 5" — Re(4 + 3i)" € Z we obtain that A\(n) is a positive integer for every n € N. Now, we

shall show that )
mn) = — E 1 - cosdf)qu(
(n) " . ( cos dfl)q H<d>

is a positive integers for every n > 1, too. Obviously,
nm(n) = Z )\(d)u<z> > (1 —cosnf)q" — 2 Z ¢t >
dn 1<d<2

20115

> gt - T > ¢ —4g7 >0 (2.18)

q—

since ¢ = 2-5%. We observe that, by formulae (1.5) and (2.17), the generating function F(y) is given

by

(1—eqy)2(1 — e~ gy)?
L—qy

F(y) = => Gn)y", (2.19)
n=0

and has two zeros ¢~ 'et?. Squaring both sides of (2.19) we conclude

(1—eqy)(1—eqy) < n
F(y) = (1 —qy) an:% mz;nG(m)G(n—m) y".
By (6.15) in Example 6.5 of [22],
Z G(m)G(n —m) = 2(1 — cos 0)ng". (2.20)
m<n

We show by induction that G(n) is an even integer number for all n > 1. Obviously,
G(1)=2-5%
Now, suppose that G(m) is even for 1 < m < n. Then

Z G(m)Gn+1—m)=G0)G(n+ 1)+ G(0)G(n+1) + Z Gm)G(n+1—-m) =

m<n+1 1<m<n

=2G(n+1)+ Z G(m)G(n+1—m)=2(1—-cosf)(n+1)¢"" =
1<m<n

=2G(n+1)=0 mod 4
and G(n + 1) is an even integer, too. Then, by Remark 1 and (2.18), m(n) € N for all n > 1.
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3. Applications. 3.1. Abstract Prime Number Theorems. In the following we use the nota-
tion (2.1).
Theorem 8 ([14], Theorem 1). Let 6 = 1 in (2.1) and assume that H(y) is holomorphic for

ly| < R, where R > q~'. If F has no zeros of modulus q~', then for every r, = < r < R, one has
q

l

A(n)g™™ =1-> (gb;)""+O((gr)™),

J=1

where bj, 1 < j <1 = I(r), are the zeros of F with ¢~! < |b;j| < r, counted according their
multiplicities.
Theorem 9 ([14], Theorem 1). Assume that the assumptions of Theorem 8 hold. If F(—q 1) =
=0, then
An)g™" =1—(=1)"+0((gr)™")
forevery r, "' < r < R.
Example 7. In [14] we gave an example by choosing

[2¢"/n], if n is odd,
0, even.

Then F'(y) is given by

1/2
14+qy (1+ qu
Fo) =12 (1) i,
I—qy \1—qy
where H,(y) is holomorphic and different from zero for |y| < ¢~ /2.
In the case 6 = 1, we assume that Axiom A; is fulfilled. Then we have the following theorem.
Theorem 10 ([8], Theorem 2). Let 6 = 1 in (2.1) and let Axiom Ay holds. If H(—q~') # 0,

then \
(:) =14o0(l) as n—
q
and, if H(—q~') = 0, then
A Aln—1
53) (;n_l ) =2+0(1) as n— 0.

Furthermore, the asymptotic formula

Z Am)g™ =n+o(n?) as n— oo

m<n

holds.

Observe that Theorem 10 ensures only a Chebyshev type upper estimate A\(n) < ¢".

A small change of Axiom .4; leads to the abstract prime number theorem and to the asymptotic
formula (3.3) with remainder term o(1). This modification is contained in the following axiom.

Axiom Ay [8]. The conditions of Axiom Ay hold, and in addition, the power series of H'
converges absolutely for |y| < q~!.

An immediate consequence is given in the following theorem.
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Theorem 11 ([8], Theorem 3). Let § = 1 in (2.1). If Axiom As holds and if H(—q 1) # 0,

then
A(;:L) =140(1) as n— (3.1)
and, if H(—q™ ') = 0, then
)\;Z) =1—(-1)"+0(1) as n— oo. (3.2)
Furthermore, the asymptotic formula
Z A(m)g ™ =n+ m +o(l) as n— o0 (3.3)

m<n

holds.
Theorem 12. Let 0 < § < 1 in (2.1) and assume that (2.1) holds for 0 < 6 < 1, and H'(y) =
=O0(1) for |y| < q~*. Then
A(n)
qn
Proof. The equation (1.5) implies

> An)g " O}
n=1

=d+o(l), n— oo.

Cl-qy

Put
H(y) -nzoh(n)y and s nzohl( )y,

o0 o0
where h(n)| < oco. Since H 0 for < ¢~ ! the series hi(n)y™ converges
n=0 Yy Yy q =0 Yy g

absolutely for |y| < ¢~ 1.

We conclude

g™ mh(m)h(n—m) = "> mh(m)g "hi(n—m)q "™ <

m<n m<n
< Y mh(m)g " ha(n—m)g "™+ > mh(m)g " hi(n —m)g” ™
F<m<n

by by

1 2

m<

NE

Obviously,

IN

0(1) Z hi(n —m)g~ "™ =o(1), n— oo,

n
0<m<3

5

and

Z <o(1) Z hi(n—m)g~ ™™™ =o(1), n— oco.
2

n

Thus, the assertion of Theorem 12 holds.
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Following Theorem 12 we put

e . H(y)
—nz:%’Y(")y =T e

With this notation we prove the following theorem.

Theorem 13. Let (2.1) holds with § = 1. Assume that Axiom Ay holds and H(—q~ ') = 0.
Suppose that the power series of f converges absolutely for |y| < ¢~' and ny(n)g™"™ = o(1) as
n — 0o. Then

M) (L o1), n s o
q
Proof. B
g 1+qy
F(y) 1_qyf(y)
we have
S ()T (1) D — of @)
nzl(A( )q (—1)" = 1)q"y Y

Now, consider

H' 0 o0
yH((yy)):{Z nh(n }{Zhl }:z:: th(m)hl(n—m) y".

Let
1 o0
)

Since f(y) # 0 for |y| < ¢! the series Z::o y1(n)y™ converges absolutely for |y| < ¢!
and ny(n)g~" = o(1) as n — oo, the proof of Theorem 12 immediately implies the assertion of
Theorem 13.

Remark 4. 1f Axiom A holds and H(—¢q~!) = 0 is, then the power series of f converges
absolutely for |y| = ¢~! (see for details [8]). Furthermore, by the absolute convergence of the power
series of H' and f we obtain the absolute convergence of the power series of f’. This means that

Axiom Ay implies the assumptions of Theorem 13.

More generally, Indlekofer showed in his paper [9] the following quantitive results for (3.1)
and (3.2).

Theorem 14 ([9], Theorem 1). Let 6 = 1 in (2.1). Assume that, for some k € N, the kth

derivative H%)(y) of H(y) converges absolutely for |y| < q~'. Then the following two assertions
hold:

() if H(—q!) # 0, then

>\(:):1+O(n_(k+1))+0<n max |h(m)|q m) as m— oo;

q 2<m<n
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Observe that if

then

—m

l—k)

n max |h(m)lg"™ = o(n

n
TSm<n

and, obviously,

> Im)lg™™ = o(n™").

m>n

Now, we give abstract prime number theorems for additive arithmetical semigroups, which satisfy
the condition of Theorem 7 in the case 0 < ¢ < 2. First of all, we have the following theorem.

Theorem 15. Assume (2.1) with 1 < § < 2. If H"(y) = O(1) for |y| < q~ ', then the following
assertions hold:

(i) if H(—q) £, then
A(n)
qn

=d+on ) as n— oo

(i) if H(—q™ ') = 0, then

A(n)
qn

=6+ (-1)"+0o(n?) as n— .

Proof. Since H"(y) = O(1) for |y| < ¢~* we conclude, by Parseval’s equation,

o0 00 1/2 / 1/2
S nlh(n)lg < (an) (Znﬂh(nn?q%) <0 (3.4)

n=1 n=1 n=1
and
|h(n)|lg™" = o(n"2) as n — oo. (3.5)
By (1.5) and (2.1), we have
- qy H'(y)
An)y" =06 +y
DAY =0

If H(—q~1) # 0, then, by (3.4),

]Jv(y) o - n - n . n
/) (z by )(z oy ) =Y 6o

where

ISSN 1027-3190. Vkp. mam. scypn., 2020, m. 72, Ne 3



REMARKS ON NUMBER THEORY OVER ADDITIVE ARITHMETICAL SEMIGROUPS

1 > "
@ = ngohl(n)y

is absolutely convergent for |y| < ¢~'. Obviously,

LN H® N o
(1) =~y ~ 2o

n=1

Let us consider

n=1

387

(3.7)

1 Ly
Then ——— and are absolutely convergent for |y| < ¢~!, and thus ho(n) =
5 ™ (7)) ¥ comereent for 2

= O(n~'h3(n)|), where
Z |ha(n)|¢™" < 0.
n=1

By (3.5) and (3.7), we conclude

nlhi(n)] < Z m|h(m)|q " ha(n — m)|q—(n—m)+

mgg
+ > mlh(m)lg " ha(n —m)|g "™ <
5<m<n

—m

< max |ha(m)[¢”™ +n max h(m)q =o(n7!) as n— oo

5<m<n F<m<n
From (3.6) we deduce in the same way
ralg™ = o(n ™),

which proves (i) of Theorem 15.
In the other case, we have

- 0 . QY qy J'(y)
2_ Ay _51—qy i +yf(y)’

3
—_

where
) = = o

Then (see [8, p. 192])
h(n)lg™ < é1(n) = > [A(m)|g™™,

and by Parseval’s equation (cf. (3.4))

5u(n) < % S Jhm)lg™ = o(n=¥2) as 0 .

n<m
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Thus is absolutely convergent for |y| < ¢~' and v(n)g~™ = o(n~/?). As in the proof of

1
) . N
Theorem 13 we obtain the assertion (ii), which ends the proof of Theorem 15.

3.2. Abstract Selberg formula.
Theorem 16. Let § = 1 in (2.1). Suppose that the power series of H" (y) converges absolutely

for |y| < q 1. Then the following assertions hold:
(i) if H(—q~Y) # 0, then

n—1
nA(n) + Z AE)A(n — k) =2n¢" + 14" + o(q") as n — oo, (3.8)
k=1
where ()
v =2 Gy — b
(i) if H(—q~ ') = 0, then
n—1
nA(n) + Z AE)A(n — k) =2ng" + c2¢" + 0o(q") as n — oo,
k=1
(3.9)
-1 3 1(,—1 H"(—g~ !
o=+ g

Proof. The left-hand sides of (3.8) and (3.9) is the nth coefficients of the power series of
F/ y / F/ y 2
y<y ()>+<y ()).
F(y) F(y)

2F'(y) | Fly) _y< F’(y)>'+( F’(y)>2

The equation

Y +y =
Fly) " F(y) F(y) F(y)
describes the analogue of the Selberg identity of classical number theory. By (2.1) we deduce
F'y) F'ly) _ 2¢°y° qy

Fy) YFly)  O-aw? 1-ay

2qy H'(y) H'(y)  H"(y)
1~/ Hy) VHY Y HE)

=rZ+Z+Z+Z+; (3.10)

1 2 3 4

_l’_

where Zl + 22 + 23 + 24 + 25 denote the corresponding power series.
Obviously,

the nth (n >2) coefficient of Z + Z is 2ng¢" —q". (3.11)
1 2

Let us assume that H(—¢~ ') # 0. Then the power series of (and H'(y)) converge absolutely

1
H(y)
1

for |y| < ¢ so that, as n — oo,
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. . H'(q")
the nth (n >2) coefficient of is 2¢"q ' =——< + o(¢"). (3.12)
(n>2) > s ola”)
Further, since H” (y) is absolutely convergent for |y| < ¢!
the nth (n >2) coefficient for Z + Z is o(q") as n— oc. (3.13)

Collecting (3.11), (3.12) and (3.13) gives assertion (i).
For the proof of (ii) assume that H(—¢ ') = 0. Then, putting H(y) = (1 + qy)f(y), by (3.10)
we obtain

oF"(y) . Flly) 297y qy 2qy < qy f’(y)>
YFo) TVF) T 0w 1w 1o \ira Yiw) T
qy f'ly) o H'(y)
T iy T O
o 2¢%y? qy 2qy  qy qy
T T-q 1-qultay  Tvay
2qy  f'(y) +8yf’(y) Ly H"(y) (3.14)

=g’ 7)) T Qe )

Putting f(y) = ZOO_O v(n)y" we know

()l < i(n) = > |h(m

n<m

which implies

> nly(n)lg ™ < Z D a(m)|g™ < Y nPlh(n)lg "
n=0 n<m n=1

Thus the power series of ——, f’(y) and H”(y) are absolutely convergent for |y| < ¢~!. By this

f (y)

the sum of the nth coefficient of the power series for the right-hand side in (3.14) is given by

wofah) G H"(—q")

qn+(_1)nqn
R )

5 +(=1)"¢" +2¢"q (=1)"q" +o(q")

2(n—1)¢" +q¢" +
which proves (ii) of Theorem 16.
Remark 5. In [18] (Chapter 3.7), Zhang proved a weaker form of Selberg’s formula

n—1

nA(n) + Z AE)A(n — k) = 2n¢"™ + O(q")
k=1

under stronger conditions. He assumed that G(n) = Aq¢" + O(¢"n™") with v > 3, which implies
|h(n)|¢g~™ = O(n~7), so that the absolute convergence of H”(y) follows immediately.
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