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SOME CHARACTERIZATIONS OF THREE-DIMENSIONAL
TRANS-SASAKIAN MANIFOLDS ADMITTING 7-RICCI SOLITONS
AND TRANS-SASAKIAN MANIFOLDS AS KAGAN SUBPROJECTIVE SPACES

JAESAKI XAPAKTEPUCTUKHU TPUBUMIPHUX TPAHC-MHOI'OBHU/IIB
CACAKSHA, IO JOIIYCKAIOTH n-COJIITOHU PIYYl,

TA TPAHC-MHOI'OBUIHN CACAKAHA SIK CYBITPOEKTHUBHI
IMPOCTOPHU KATAHA

The object of the present paper is to study three-dimensional trans-Sasakian manifolds admitting 7-Ricci soliton. Actually,
we study such manifolds whose Ricci tensor satisfy some special conditions like cyclic parallelity, Ricci semisymmetry,
¢-Ricci semisymmetry, after reviewing the properties of second order parallel tensors on such manifolds. We determine
the form of Riemann curvature tensor of trans-Sasakian manifolds of dimension greater than three as Kagan subprojective
spaces. We also give some classification results of trans-Sasakian manifolds of dimension greater than three as Kagan
subprojective spaces.

BuBuarotecst TpuBUMIipHI TpaHc-MHOTOBUAN CacaksHa, sKi JOITyCKalOTh 7)-CONiTOHM Piudi. BiacHe, micns ormsiny BiacTH-
BOCTEl MapaseibHUX TEH30pPIB APYroro MOPsIKY Ha TaKMX MHOTOBHIaX MH BHBYAEMO MHOTOBHJAH, TeH30p Piudi sikmx
3aJJ0BOJIBHSIE JESKI CIIEIiajbHI YMOBH, TaKi SK LHUKIIYHA MApaJelbHICTh, HAIMBCUMETpis Piudi, ¢-HamiBcumerpist Pivdi.
Busnaueno ¢opmy TeHsopa kpuBuHu PiMana juis TpaHc-mHoroBuiB CacaksiHa, pO3MIpHICTh SIKUX OUIbINa HiXK 3, sIK CyO-
HNpOeKTHBHHX npoctopiB Karana. Takox HaBeleHO Jeski kiacudikamiiiHi pe3ynsratu i TpaHc-MHorosuniB CacaksiHa,
PO3MIpHICTP SKHX OiblIa HiX 3, K CyOnpOeKTHBHUX MpocTopiB Karana.

1. Introduction. In [18], R. S. Hamilton introduced the revolutionary concept of Ricci flow on
surfaces. The concepts of Ricci flow in physics was introduced by Friedan [14] almost around in the
same time but with different motivations. Now a days such geometric flows have become popular,
largely, because of Perelman’s [22] work which lead to the proof of well known Poincaré conjecture.
A Ricci soliton is a special solution of Ricci flow. This is considered as a natural generalization of
Einstein metric and is defined on a Riemannian manifold (M, g) by

(£v9)(X,Y) +25(X,Y) +2\g(X,Y) =0, (1.1)

where £y denotes the Lie derivative operator along a complete vector field V. V is known as
potential vector field. A is a constant, called soliton constant. S is the Ricci tensor and g is the
metric. X, Y are the arbitrary vector fields on M. The Ricci soliton is said to be shrinking, steady
or expanding as A is negative, zero or positive, respectively [7]. The study of Ricci solitons on
contact manifolds was initiated by R. Sharma [24]. Later several authors have studied Ricci soliton
on almost contact manifolds. For example, we may refer the papers [12, 15, 16, 27]. In [5], it has
been proved that a real hypersurface in a non-flat complex space form does not admit a Ricci soliton
with & as soliton vector field and then the author adopted the notion of n-Ricci soliton. The n-Ricci
soliton (g, &, A, 1) on a Riemannian manifold is defined by

Leg+25+2X=2pum@n =0,
where £ is the Reeb vector field, i is a constant and the other objects are as described in equa-

tion (1.1). For details see also [2, 6, 8, 23]. Since 1923 [13], second order parallel tensors are studied
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by several authors [20]. Second order parallel tensors were studied in the frame work of contact
manifolds by R. Sharma [25].

If geodesics are represented by n — 2 homogeneous linear equations for a suitable coordinate
system in an affine space A,, then A,, is called a subprojective space by B. Kagan [19]. T. Adati [1]
have studied such spaces intensively and proved that Kagan subprojective spaces are conformally
flat [1, p. 160]. In this paper, we would like to find form of Riemann curvature tensors of trans-
Sasakian manifolds of dimension greater than three as Kagan subprojective spaces. We give some
classification results of such spaces.

2. Preliminaries. Let M be a differentiable manifold of dimension 2n + 1. M is said to have
almost contact structure [3] if there is a (1,1) tensor field ¢, a vector field £ and a 1-form n on M
such that

¢*X =X +n(X)E, n©) =1,

where X € x(M), the set of all differentiable vector fields on M. On such manifolds it can be also
proved that

=0, neX)=0, g(X,9Y)=—g(X)Y),  g(X,£)=n(X)

for X,Y € x(M). An almost contact structure is called almost contact metric structure if there exists
a Riemannian metric g on M satisfying

9(dX,8Y) = g(X,Y) —n(X)n(Y).

The (0,2) tensor field @ defined by #(X,Y) = g(X, ¢Y) is known as fundamental 2-form of the
manifold. If @ is closed, an almost contact metric structure reduces to contact metric structure [3]. An
almost contact metric structure (¢, &, 7, g) on a differentiable manifold M is called a trans-Sasakian
structure [21] if (M x R, J,G) belongs to the class W, in the Gray—Hervella classification [17].

d d
Here J is the almost complex structure on M x R defined by J <X, fdt> = <¢X — fé&, n(X)dt>,

for all vector fields X on M and smooth functions f on M x R and G is the product metric on
M x R. This fact may be formulated by the following equation [4]:
(Vx)Y = a(g(X,Y)§ —n(Y)X) + B(9(¢X,Y)§ — n(Y)pX),
where o and [ are smooth functions on M. The above formula implies
Vx§ = B(X —n(X)§) — agX, 2.1)
(Vxn)Y = —ag(¢X,Y) + Bg(oX, 9Y). (2.2)
The Ricci tensor [11] of a three-dimensional trans-Sasakian manifold is given by
S(Y) = (5468 (a2 = %)) g(X,Y) = (5 + €8 = 3(a” = B%) ) n(X)n(¥)~
—(YB+ (¢Y)a)n(X) — (XB + (¢X)a)n(Y), (2.3)

where r is the scalar curvature of the manifold. Again from [9], we known that the Riemann
curvature of a three-dimensional trans-Sasakian manifold is given by
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R(X,Y)Z = (g +268—2(a? — ﬂ2)> (9(Y, 2)X — g(X, Z)Y)—
—9(v.2) [ (5 +€8 = 3(a% = 7)) n(X)¢ = n(X)(égrad & — grad §)+
+(XB+ (6X)a)e] +9(X, 2) [ (5 +€8 - 3(a® = B) ) n(Y )& — n(Y)(dgrad a — grad B)+
+ (VB +(@V))E| = [(Z8 + (92)a)n(Y) + (VB + (6Y )a)n(Z) +
+ (5 +€8-3(a% = 8%)) n(Y(2)] X + (28 + (9Z)a)n(X) +

+(XB+ (6X)a)n(2) + (5 +€8 - 3(a> = %) ) n(X)n(2)] Y- 24

Again
208+ &a = 0.

3. Existence criteria of 17-Ricci soliton on three-dimensional trans-Sasakian manifolds.

Theorem 3.1. A three-dimensional trans-Sasakian manifold with constant &-sectional curvature
admits n-Ricci soliton if and only if £¢g + 25 + 2un ® n is parallel.

Theorem 3.2. A three-dimensional proper trans-Sasakian manifold with cyclic parallel Ricci
tensor does not admit n-Ricci soliton. It reduces to Einstein manifold.

Proof. Let (M, g,&, )\, 1) be a three-dimensional trans-Sasakian n-Ricci soliton. Then we have
(£eg)(X,Y) +28(X,Y) +20g(X,Y) + 2un(X)n(Y) = 0.

Expressing the Lie derivative in terms of covariant derivative and using (2.1), we obtain

2u—p
2

2A+ 8

S(X,Y) = -5

9g(X,)Y)+

n(X)n(Y). (3.1

In [12], it was proved that if 7' is a symmetric parallel tensor on a trans-Sasakian manifold of
dimension three with non-zero £-sectional curvature, then

T(X7Y) = T({,f)g(X, Y)

We see that (£¢9)(X,Y) +2S5(X,Y) +2un(X)n(Y) is a symmetric (0, 2) tensor. Hence, by using

its property, we obtain Theorem 3.1. Consider the manifold has cyclic parallel Ricci tensor [9]. By
2(A
virtue of (3.1) and (2.3), after simplification we have S = —(;5) g.

Theorem 3.2 is proved.
4. Ricci semisymmetric three-dimensional trans-Sasakian manifold admitting 7-Ricci soli-
ton.

Theorem 4.1. [f a three-dimensional trans-Sasakian manifold of type (o, B), where o # 03

and 8 = constant, admitting n-Ricci soliton is Ricci semisymmetric, then p =

N

Corollary4.1. A Ricci semisymmetric three-dimensional a-Sasakian manifold does not admit
proper n-Ricci soliton.
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Proof. 1t is well known that a Riemannian manifold is called Ricci semisymmetric if
(R(X,Y)S)(U,V)=0.
The above condition implies
S(R(X,Y)U,V)+ S(U,R(X,Y)V =) =0.
Putting Y =V = &, we have

S(R(X,6)U,€) + S(U, R(X,£)€) = 0.

Using (2.4) in the above equation, after straight forward computation we have p = é, provided

a # 5. So, we have Theorem 4.1 for a-Sasakian case ov = constant and § = 0. Thus we have
Corollary 4.1.

5. ¢-Ricci symmetric three-dimensional trans-Sasakian manifold admitting n-Ricci soliton.
The notion of ¢-Ricci symmetry was given by the first author in [10]. An almost contact manifold
is called ¢-Ricci symmetric if the Ricci operator () satisfies

¢*(VwQ)X =0.
The manifold is called locally ¢-Ricci symmetric if X and W are orthogonal to €.
Theorem 5.1. A three-dimensional trans-Sasakian manifold admitting n-Ricci soliton is ¢-Ricci
symmetric if and only if © = g
Proof. By virtue of (3.1) we obtain

A0y 200

X =-
@ 2 2

Hence,

2 2

The above equation proves Theorem 5.1.

6. Form of Riemann curvature tensors of trans-Sasakian manifolds of dimension greater
than three as Kagan subprojective spaces. Riemann curvature tensors for three-dimensional trans-
Sasakian manifolds have been deduced in the paper [11]. In this section, we like to deduce the form
of Riemann curvature tensors of trans-Sasakian manifolds of dimension greater than three as Kagan
subprojective spaces [19].

Theorem 6.1. The form of Riemann curvature tensor of a trans-Sasakian manifold of dimension
greater than three as Kagan subprojective space is given by

(V@)X = o <ﬁ - u) n(X)p* (W) + 8 <u — 5) O*W.

RXZ = (gt = g (gmle? = ) ) (G220 — (X 2)7)+

+2m1— P (5 + @t D0 = 5) (02X~ n(X)n(Z)Y).

Theorem 6.2. A trans-Sasakian manifold of dimension greater than three as Kagan subprojec-
tive space is Einstein manifold. Hence, it does not admit Ricci soliton and n-Ricci soliton.

ISSN 1027-3190. Vkp. mam. oscypn., 2020, m. 72, Ne 3



SOME CHARACTERIZATIONS OF THREE-DIMENSIONAL TRANS-SASAKIAN MANIFOLDS ... 431

Proof. T. Adati [1] have proved that Kagan subprojective spaces are conformally flat. We know
that the Weyl conformal curvature tensor C' of a (2m + 1)-dimensional (m > 1) manifold is given
by

C(X,Y)Z=R(X,Y)Z — [g(Y, 2)QX — g(X,Z)QY + S(Y,Z)X — S(X, Z)Y |+

2m —1
r

+W[Q(Ya Z)X —g(X, Z)YL

where S is Ricci tensor and () is Ricci operator. Since Kagan subprojective spaces are conformally
flat, we get

R(X,Y)Z = 2ml— 1 [g(Y, 20X —g(X,2)QY + S(Y, 2)X - S(X,2)Y|—

r

—%@Ejﬁpmzm>mxzw]

From the above equation, we find S and ) and obtain the results.

7. Some classification results of a trans-Sasakian manifold of dimension greater than three
as Kagan subprojective space.

Definition 7.1. A Riemannian manifold is called locally ¢-symmetric [26] if

¢*(VwR)(X,Y)Z =0,

for X,Y, Z orthogonal to €.
Theorem 7.1. A trans-Sasakian manifold of dimension greater than three as Kagan subprojec-

tive space is locally ¢p-symmetric if and only if j—; = 4(ada — Bdp).

Theorem 7.2. If the structure functions o and 3 of a trans-Sasakian manifold of dimension
greater than three as Kagan subprojective space are same, then the manifold is locally ¢-symmetric
if and only if the scalar curvature of the manifold is constant.

Theorem 7.3. If the structure functions o and (8 of a trans-Sasakian manifold of dimension
greater than three as Kagan subprojective space are constants, then the manifold is locally ¢-
symmetric.

Proof. By using Theorem 6.1, we get

¢*(VwR)(X,Y)Z =

(a2 (ar
C\2m(2m—1) 2m—1\2m

+2(ada — 5d5)>> (g(X, 2)Y — g(v, Z)X), (1.1)

for X, Y, Z orthogonal to £. Let us consider the following cases:
Case 1. Consider « and [ as arbitrary functions:
Subcase 1.1: Let o # B. In that case we get Theorem 7.1 from (7.1).

Subcase 1.2: Let a and [ are equal functions. In that case ada — SdfS = 0. So, we obtain
Theorem 7.2 from (7.1).
Case?2. Let o and 3 are constants. In that case, deducing S from R, we have Theorem 7.3.
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