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PO HEJIHIMHUN JUPEPEHIIAJIBHAN OJHOYIEH
31 CIIUIBHUM HEHYJIbOBUM MHOTI'OYWIEHOM

With the idea of normal family we study the uniqueness of meromorphic functions f and g when f™(L(f))™ — p and
9" (L(g))™ — p share two values, where L(f) = anf® tap_1fF V4 tarf +aof, ar(#0),ak-1,...,a1,a0 € C
and p(z)(# 0) is a polynomial. The obtained result significantly improves and generalizes the result in [A. Banerjee,
S. Majumder, On certain non-linear differential polynomial sharing a non-zero polynomial, Bol. Soc. Mat. Mex. (2016),
https://doi.org/10.1007/s40590-016-0156-0].

Ha 6a3i igei mpo HOopMambHi ciM’i (yHKIIH BHBYA€ThCA €AMHICTH MepoMopdHHX ¢GyHKHiH f i g y BHIAIKy, KOJIH
fHL(f)™ —pigt(L(g))™ — p matorp crinbHi 3HaueHns, xe L(f) = anf® + ap_1f* Y 4+ arf +aof,
ak(# 0),ak—1,...,a1,a0 € C, a p(z)(£ 0) — nonisom. OTpuMaHuil pe3yJIbTaT € ICTOTHAM y3arajJbHEHHSM PE3YIBTATY 3
[A. Banerjee, S. Majumder, On certain non-linear differential polynomial sharing a non-zero polynomial, Bol. Soc. Mat.
Mex. (2016), https://doi.org/10.1007/s40590-016-0156-0].

1. Introduction definitions and results. In this paper, by meromorphic functions we mean that
meromorphic functions in the whole complex plane C. We adopt the standard notations of value
distribution theory (see [9]). We denote by 7'(r) the maximum of 7'(r, f) and T'(r, g). The notation
S(r) denotes any quantity satisfying S(r) = o(T'(r)) as r — oo, outside of a possible exceptional
set of finite linear measure. A meromorphic function a is said to be a small function of f if
T(r,a) = S(r, f). We denote by S(f) the set of all small functions of f. We use the symbol p(f)
to denote the order of f.

Let f(z) and g(z) be two nonconstant meromorphic functions. Let a(z) € S(f) N S(g). We
say that f(z) and g(z) share a(z) counting multiplicities (CM) if the zeros of f(z) — a(z) and
g(2z) — a(z) have the same locations and same multiplicities, and we say that f(z) and g(z) share
a(z) ignoring multiplicities (IM) if the zeros of f(z) —a(z) and g(z) — a(z) have the same locations
but different multiplicities.

We say that a finite value zj is called a fixed point of f if f(z9) = zp. For the sake of simplicity,
we use the notion (m)* defined by (m)* = m — 1, if m is a positive integer; (m)* = [m], if m is
positive rational, where [m] denotes the greatest integer not exceeding m.

Let h be a meromorphic function in C. Then h is called a normal function if there exists a
positive real number M such that h#(z) < M Vz € C, where

W)
) = T her

denotes the spherical derivative of h.
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Let F be a family of meromorphic functions in a domain D C C. We say that F is normal in
D if every sequence { f,}, C F contains a subsequence which converges spherically and uniformly
on the compact subsets of D (see [16]).

The following well-known theorem in value distribution theory was posed by Hayman and settled
by several authors almost at the same time [3, 5].

Theorem A. Let f be a transcendental meromorphic function and n € N. Then f"f' =1 has
infinitely many solutions.

To investigate the uniqueness result corresponding to Theorem A, both Fang and Hua [7], Yang
and Hua [20] obtained the following result.

Theorem B. Let f and g be two non-constant entire (meromorphic) functions, n € N with
n>6 (n>11). If f*f" and g"g' share 1 CM, then either f(z) = c1e“ and g(z) = coe™ %, where
c,c1,c2 € C\ {0} satisfying 4(cico)"c? = —1 or f =tg, t € C\ {0} such that t"** = 1.

Considering the uniqueness question of entire or meromorphic functions having fixed points,
Fang and Qiu [8] obtained the following theorem.

Theorem C. Let f and g be two non-constant meromorphic (entire) functions, n € N with
n>11 (n>6). If f(2)f'(z) — z and g"(2)g'(z) — z share 0 CM, then either f(z) = c1e* and
g(2) = coe™" where c,c1,c5 € C\ {0} satisfying 4(crc2)" 2 = —1 or f = tg, t € C\ {0}
such that t"T! = 1.

It is instinctive to ask what happens if the first derivative f’ in Theorem A is replaced by the
general derivative f(*). By considering this problem, Xu et al. [17] and Li [24], respectively, proved
the following result.

Theorem D. Let f be a transcendental meromorphic function and k,n € N with n > 2. Then
17 f*®) takes every finite non-zero value infinitely many times or has infinitely many fixed points.

Recently, Cao and Zhang [6] proved the following theorem.

Theorem E. Let f, g be two non-constant meromorphic functions, whose zeros are of multipli-
cities at least k+ 1, k € N with 1 < k <5 and let n € N with n. > 10. If " f*) and g"g*) share
1 M, f*%) and g*®) share 0 CM, f and g share oo IM, then one of the following two conclusions
hold:

(i) f=tg, t € C\ {0} such that t"*t! =1,

(i) f(2) = c1e% and g(z) = coe™%, where a, c1,ca € C\{0} such that (—1)¥(cic2)"a? = 1.

Regarding Theorem E, the following questions are inevitable.

Question 1. Can the lower bound of n be further reduced in Theorem E?

Question 2. Can the condition “Let f and g be two non-constant meromorphic functions, whose
zeros are of multiplicities at least £k + 1, £ € N” in Theorem E be further weakened?

Question3. Does Theorem E hold for £ > 6?

We now explain the notation of weighted sharing as introduced in [11].

Definition 1 [11]. Let k € NU{0} U{o0}. For a € CU{oco} we denote by Ey(a; f) the set of
all a-points of f, where an a-point of multiplicity m is counted m times if m < k and k + 1 times
if m > k. If Ex(a; f) = Ex(a;g), we say that f and g share the value a with weight k. We write f
and g share (a, k) to mean that f and g share the value a with weight k.
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Keeping in mind the above questions, Banerjee and Majumder [2] obtained the following result
in 2016.
Theorem F. Let f, g be two transcendental meromorphic functions, whose zeros are of multi-
k2 + 4k + 4\~
+k+> . Let p(z)(# 0) be a polynomial

such that either deg(p) < n — 1 or zeros of p(z) be of multiplicities at most n — 1. If f*f*) —p
k+2

and g"g"®) — p share (0, k1), where k1 = {—Fk] 3 and f, g share 0o IM and %) ¢*%) share
n—

0 CM, then f =tg, t € C\ {0} such that t"*! = 1.

Throughout this paper, we always use £(f) to denote a differential polynomial as follows:

plicities at least k € N and n € N such that n > (

L(f)= akf(k) + akflf(kil) +...+ alf' +aof, ar(#0), ag_1,...,a1,a9 € C. (1.1)

Now we observe Theorem F. Then it is natural to ask the following questions which are the motive
of the present paper.

Question 4. Can one remove the condition “deg(p) < n — 1 or zeros of p(z) be of multiplicities
at most n — 1” in Theorem F?

Question 5. What happens when “f™(L(f))™ — p and ¢g"(L(g))™ — p” share the value 0 CM,
where p(z)(% 0) is a polynomial in Theorem F?

Question 6. Can the lower bound of n be further reduced in Theorem F?

2. Main result. In this paper, taking the possible answers of the above questions into background
we obtain the following result which significantly improves and generalizes Theorem F.

Theorem 1. Let f and g be two transcendental meromorphic functions having zeros of multi-

k* 4 2mk + 6
plicities at least k € N. Let m,n € N such that n > # and p(z)(# 0) be a polynomial.

" m " m B 3+ (k—1)m
I FHLH)™ —p and g*(L(g))™ — p share (0, ky), where ky = | ————— (m 2k 1
f, g share 0o IM and L(f), L(g) share 0 CM, then [ = tg, where t € C\ {0} with t"*™ = 1.
Remark 1. It is easy to see that the condition “Let f and g be two transcendental meromorphic
functions having zeros of multiplicities at least & € N” in Theorem 1 is sharp by the following
example.
Example 1. Let

+ 3 and

f(z) =c1e” and g(z) = c2e” ",

where a, ci,c2 € C\ {0}. Note that
L(f(2)) = agf"(z) + arf'(z) + aof(2) = c1 (aga® + ara + ag) ¥

and
az

L(g(2)) = az9"(2) + a19'(2) + aog(2) = c2 (a2a® — ara + ag) €™,
where as(# 0), a1, a9 € C such that

m m
C?er (a2a2 + a1a + ao) = cg”rm (aga2 —aia+ ao) , m,n¢€N.

Since f and g have no zeros, it follows that the condition “Let f and g be two transcendental
meromorphic functions having zeros of multiplicities at least £ € N” does not hold. Here we see
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that f, g share oo CM and L(f), £(g) share 0 CM. On the other hand, we see that

LG E)™ ~ () = ¢ (a0 +ara + ag) " (e 1)

and
§ L) —ple) = 7 (aga? — ara+ag)™ (e 2tm= 1)

where p(z) = ¢} 7" (aza® + a1a + ag)"". Clearly f"(L(f))™ —p and g"(L(g))™ — p share (0,00),
but f # tg, where t € C\ {0} with "t = 1.

We now explain some definitions and notations which are used in the paper.

Definition 2 [14]. Let p € N and a € CU {o0}.

(i) N(r,a; f |>p) (N(r,a; f |> p)) denotes the counting function (reduced counting function)
of those a-points of f whose multiplicities are not less than p.

(i) N(r,a;f|<p) (N(r,a; f|< p)) denotes the counting function (reduced counting function)
of those a-points of f whose multiplicities are not greater than p.

Definition 3 [22]. For a € CU{oo} and p € N we denote by N,(r,a; f) the sum N(r,a; f) +
+ N(r,a; f|>2)+ ...+ N(r,a; f |> p). Clearly Ny(r,a; f) = N(r,a; f).

Definition 4. We denote by N(r,a; f |= k) the reduced counting function of those a-points of
[ whose multiplicities exactly k € N. Clearly N(r,a; f |=1) = N(r,a; f |=1).

Definition 5 [1]. Let f and g be two non-constant meromorphic functions such that f and g
share 1 IM. Let zy be a 1-point of f with multiplicity p and a 1-point of g with multiplicity q.
We denote by N (r,1; f), the counting function of those 1-points of f and g where p > q and by
N%(r, 1; f), the counting function of those 1-points of f and g where p = q > 1, each point in
these counting functions is counted only once, where | € N\ {1}. In the same way we can define
Np(r,1;9) and Ng(r, 1;9).

Definition 6 [11]. Let f, g share a value a IM. We denote by N (r,a; f, g) the reduced counting
function of those a-points of f whose multiplicities differ from the multiplicities of the corresponding
a-points of g. Clearly N.(r,a; f,g) = Np(r,a; f) + Np(r,a;g).

3. Lemmas. In this section, we present some lemmas which will be needed in the sequel. Now
we define the following two auxiliary functions H and G, respectively:

F// 2F/ G/l QG/
H—<F’ _F—1>_<G’ _G—l) S

F’ F’ G’ G’ F’ G
V= A -9 = - 7 (32)
F-1 F G-1 G F(F-1) GG-1)
where F' and G are two non-constant meromorphic functions.

Lemma 1 [23]. Let f be a non-constant meromorphic function and L(f) be a differential poly-
nomial defined as follows:

and

L(f) = % + a1 fOD  apo f*2 + ot arf +aof,
where k € N, aj € S(f), 7=0,1,...,k = 1. If L(f) # 0 and p € N, we have
Np(r,0; L(f)) < kN (r, 005 f) + Npy(r, 0; f) + S(r, f).
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Lemma 2 [12]. If N(r,0; f®) | f # 0) denotes the counting function of those zeros of f*)
which are not the zeros of f, where a zero of f*) is counted according to its multiplicity. Then

N (r0:f® | £ #0) < kNG00 f) + N(r,0; £ [< k) + KN (r,0: f |2 k) + S(r. ).

Lemma 3 [19]. Let f be a non-constant meromorphic function and P(f) = ag+ay f+asf>+. ..
o+ anf", where ag,a1,az...,an(#0) € C. Then T'(r, P(f)) = nT'(r, f) + O(1).

Lemma 4 [13]. Let f be a transcendental meromorphic function and o(# 0,00) € S(f), then
Y = a(f)(f*)P & C, where n € NU {0} and p, k € N.

Lemma 5 [21]. Let f;, j = 1,2,3, be a meromorphic and f1 be non-constant. Suppose that
S h=tand 3 N0+ 23 Nrooifi) < (A o(I)Ti() as r > +oo,
rel, N<1and Ti(r) = maxi<j<3T(r, f;), where I is a set of infinite linear measure. Then
either fo =1 or f3 =1.

Lemma 6 ([21], Theorem 1.24). Let f be a non-constant meromorphic function and k € N.
Suppose that f) £ 0, then N(r,0; f(k)) < N(r,0; f) + kN(r,00; f) + S(r, f).

Lemma 7. Let f, g be two non-constant meromorphic functions, whose zeros are of multipli-
cities at least k, where k € N and F = f"(L(f))"/p, G = g"(L(g))™/p, where p(z)(# 0) is a
polynomial and m,n € N such that n +m + (m — 2)k > 1. Suppose H # 0. If F, G share (1,k;)
except for the zeros of p and f, g share (c0,0), where 0 < k1 < oo, then

- k+1
N(r,o0; f) < kE(n+m+ (m—2)k—1)

(T(r, f) +T(r,9))+

1 __
* alv ’ ’ ’ .
+n+m+(m—2)k—1N(T F,.G)+ S(r,f)+ S(r,9)

Proof. First, we suppose oo is a Picard exceptional value of both f and ¢g. Then the lemma

follows immediately. Next we suppose oo is not a Picard exceptional value of both f and g. We

1 1
claim that V' # 0. If possible suppose V' = 0. Then by integration we obtain 1 — = Afl-— eIk

A € C\ {0}. Itis that if 2o is a pole of f, then it is a pole of g. Hence from the definition of F' and

=0 and =0. So, A =1 and hence F' = G. Since H # 0, it follows that
F(20) G(20)

F # G. Therefore we arrive at a contradiction. Hence V' # 0. Also m(r,V) = S(r, f) + S(r, g).
Let 2z be a pole of f with multiplicity ¢ and a pole of g with multiplicity r such that p(zy) # 0.
Clearly 2 is a pole of F' with multiplicity (n + m)g + mk and a pole of G with multiplicity

(n +m)r + mk. Clearly

G we have

—0 ((Z _ ZO)(TH—m)q—i-mk—l)

and
G'(2)

G(2)(G(2) = 1)
Consequently V(z) = O((z — zo)(”+m)t+mk_1), where ¢t = min{q, r}. Since f and g share (o0, 0),
from the definition of V' it is clear that z( is a zero of V' with multiplicity at least n + m + mk — 1.
So from the definition of V' and using Lemma 2 we have

—0 ((z _ ZO)(n+m)T+mk—1> _
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(n+m+mk —1)N(r,00; f) <
< N(r,0;V) +O(logr) < T(r, V) + S(r, f) + S(r, g) <
< N(r,00; V) + S5(r, f) + 5(r,g) <
< N(0;F)+ N(r,0;G) + Nu(r,1; F,G) + S(r, f) + S(r, g) <
SN0 £)+ N (1,0: 5| £ #0) + N(r.0:9) + N (r,0:9%) | g #0) +
+N.(r, L, F,G) + S(r, f) + S(r, 9) <
< N(r,0; f) 4k N(r,00; f) 4 Ni(r,0; f) 4+ N(r,0; g) + k N(r, 00; )+
+Nk(r,0;9) + Nu(r, 1, F,G) + S(r, ) + S(r, g) <

< SN0 ) + S N, 0:9) + 2KN(r, 001 )+ N, 1 F,G) + 807, 1) + 8(r,) <

< % (T(r, f) + T(r,g)) + 2k N(r,00; f) + Nu(r, 1, F,G) + S(r, f) + S(r, 9).

Lemma 7 is proved.
Lemma 8. Let f be a non-constant meromorphic function and let F' = f"(L(f))™, where
m,n, k € N satisfying n > m. Then

(n—=m)T(r, f) <T(r,F) = mN(r,00; f) = N (r,0; (L(f))™) + S(r, [).
Proof. Note that
N(r,00; F) = N (r,00; f") + N (r, 00; (L(f))™) =
= N (r,00; f") + mN (r,00; f) + mkN(r, 00; f) + S(r, f),

1.e.,
N(T,Oo;fn) :N(r,oo,F)—mN(r,oo;f)—mkﬁ(r,oo,f)—l—S(r,f).

Also

gm(r,F)er(r,(ﬁ(ch))m) +S8(r, f) =

=m(r, F) + T (r, (L(f))™) = N (1, 0; (L(f)™) + S(r, f) =
= m(r, F) + N (r,00; (L(f))™) +m (r, (L(F)™) = N (r,0; (L(F)™) + S(r, f) <
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m(r, F) +mN(r,o00; f) +mk N(r,00; f) + m <r, (ﬁ;éz)m> .\

m (r, f) = N (r,0; (£(f))™) + S(r, f) =
=m(r,F) +mT(r, f) +mk N(r,00; f) = N (r,0; (L(f))™) + S(r, f).
Now
nT(r, f) = N (r,00; f*) +m(r, f") <
<ST(r, F)+mT(r, f) = mN(r,00; f) = N (r,0; (L(f))™) + S(r, f),

ie.,
(n—m)T(r, f) <T(r,F) = mN(r,o00; f) — N (r,0; (L(f))™) + S(r, f).

Lemma 8 is proved.

Lemma 9. Let f be a transcendental meromorphic function and let a(z)(# 0,00) € S(f). If
n>m+ 1, then f"(L(f))™ — a has infinitely many zeros, where n,m,k € N.
Proof. Let F = f"(L(f))™. Note that

T(r,F)= N(r,o0; F) +m(r, F) <

< N (r,00; f") + N (r,00; (L(f))™) +m (r, f™) +m( (%)m)
/

< N (r,00; f) +mN(r, 005 L(f)) + (0 +m)m(r, ) +mm ( ﬁi‘f )>

< nN(r,00; f) +m(N(r,00; f) + k N(r,00; f)) + (n +m)m(r, f) + S(r, f) <
< (n+ (k+1)m)N(r,00; f) + (n+m)m(r, f) + S(r, f) <
< (n+ (k+1)m)T(r, f) + S(r, f). (3.3)
Also by Lemma 8 we have
(n—m)T(r,f) <T(r,F)+ S(r, f). (3.4)
Since n > m + 1, from (3.3) and (3.4) we conclude that S(r,F") = S(r, f). Now we prove
that F' — a has infinitely many zeros. If possible suppose F' — a has finitely many zeros. Then

N(r,a; F) = O(logr) = S(r, f) = o(T'(r, f)). Now in view of Lemma 8, (3.3) and the second
fundamental theorem for small functions (see [18]) we get

(n=m)T(r, f) <T(r,F) = mN(r,00; f) = N (r,0; (L(f))") + 5(r, f) <
_N(T,O;F)—I-N(T,OO;F)—I-N(T,G;F) —mN(r,oo;f) _N(T’O; (‘C(f))m)+
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208 S. MAJUMDER, A. DAM
+HE+o()T(r, F) +5(r, f) <
< N(r, 05 f) + N (1,0; (£(f)™) + N(r,00; f) = mN(r, 005 f) = N (r,0; (£(f))™) +
+eT(r, F) + o(T(r, F)) + S(r, f) <
< N(r,0; f) + eT(r, F) + S(r, F) + S(r, f) <

<T(r, f)+ n+ (k+1)ym)eT(r, f) +eS(r, f)+ S(r, f)

for all £ > 0. Therefore,

(n—m—=1T(r,f) < (n+ (k+1)m)eT(r, f) + S(r, f). (3.5)
If we take 0 < e < w, then from (3.5) we arrive at a contradiction. Hence F' — a has
n+ (k+1)m

infinitely many zeros.

Lemma 9 is proved.

Lemma 10 [10]. Let f and g be two non-constant meromorphic functions. Suppose that f and
g share 0 and co CM, f*) and ¢**) share 0 CM for k =1,2,...,6. Then f and g satisfy one of
the following cases:

(i) f=tg, wheret € C\{0};

(i) f(2) = e T and g(z) = e+ where a(#£ 0), b, ¢(#0), d € C;

(i) f() = and g(z) =

% , where a,b € C\ {0} and « is a non-constant
— eOé z

a
entire function;

(iv) f(z) =a(l—be*) and g(z) = d(e™* —b), where a,b,c,d € C\ {0}.

Lemma 11. Let f and g be two transcendental meromorphic functions having zeros of mul-
tiplicities at least k € N, m,n € N. Let L(f), L(g) share 0 CM and f, g share oo IM. If
FL(f)™ = g™(L(g))™. Then f =tg, where t € C\ {0} such that t"t™ = 1.

Proof. Suppose

FUE)™ = g™ (3.6)
L)
7 = (L) e

Since f and g share oo IM, it follows from (3.6) that f and g share co CM and so £(f) and
L(g) share co CM. Again since £(f) and L(g) share 0 CM, it follows that f and g share 0 CM

also. Let hy = f and hy = iif)) Then hy # 0,00 and hg # 0, 00. From (3.7) we see that
g g

RORT = 1. (3.8)

First we suppose h; is a non-constant entire function. Clearly ho is also a non-constant entire
function. Let 'y = A and G = h5'. Also from (3.8) we get
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F1G1 =1. (39)

Clearly F # doG1, where dy € C\ {0}, otherwise F; € C and so h; will be a constant. Since
Fy # 0,00 and G # 0,00 then there exist two non-constant entire functions « and $ such that
Fi = e and G1 = €. Now from (3.9) we see that a + 3 = C, where C' € C. Therefore o/ = —f3'.
Note that ] = o/e® and G} = B’e”. This shows that F| and G/ share 0 CM. Note that F; # 0, oo,
G1 # 0,00 and Fy # doGy, where dy € C\ {0}. Now in view of Lemma 10 we have to consider
the cases Fi(z) = c1€? and G1(z) = coe™ %, where a, c1,co € C\ {0} such that ¢;co = 1. Since

() o oo ()

it follows that

f(2) a (f(2)) _a d
=t1en? =t and = toe” m”® = t9e?, (3.10)
9(2) L(g(2))
where ¢, d, t1,ta € C\ {0} such that t} = ¢y, t5' = c9, ¢ % and d = —%. Let
L£'f)  L'g)
o = — . 3.11
'S L) G1D
From (3.10), we see that
D1(z) = d. (3.12)

Again from (3.10) we see that fU)(2) =t Z],_O Cg(ecz)(i)g(j_i)(z), ie.,

f(j)(z) = t1e% <g(j)(z) +jcg(j*1)(z) + M czg(jfz)(z) + ...+ cjg(z)) .

2
Therefore
L(f(2)) = t1e” (akg(k)(Z) + (keag, + ar—1)g* Y (2)+
+ <k(k2_1) Aag + (k—1Dcag—1 + akg) g(k_Q)(z) + .. > (3.13)
and

L(f(2) =t1e” (akg(k+1)(z) + ((k + Deag + ap—1) g™ (2)+

+ <k(k2+l) Aag + keagp_1 + ak_g) g(k_l)(z) + ... ) ) (3.14)

Now from (3.11), (3.13) and (3.14), we have
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o, Got g5 , (3.15)
where
Ga(z)= > Aijg2)gP(z) and Gs(z)= > Bijg"(2)g"(2),
0<i<k+1 0<i,j<k
0<j<k 0<i+5<2k—1
0<i+j<2k—1

A; j,Bi; € C. Let z, be a zero of g(z) with multiplicity p(> k). Then the Taylor expansion of g
about z,, is

9(2) = bp(z — 2p)P + bpp1(2 — 2p)P T+ bpia(z — 2,)PT2 4+ ..., b, #0. (3.16)

We now consider following two cases.
Case 1. Suppose p = k. Then

g M (2) = kb + (k + D)bpyr(z — 21) + . ... (3.17)
and
gF () = (kb + Dlbpgr + (b +2)bpyo(z — 26) + - . ... (3.18)
Now from (3.15), (3.17) and (3.18), we have

2p2
<I>1(zk) =cC (k—{_(kl‘))glngk = C(k + 1). (3.19)

Therefore, we arrive at a contradiction from (3.12) and (3.19).
Case2. Suppose p > k + 1. Then

gF V) =pp—1) ... (p— k4 2)by(z — 2,)PF+HD 4

gW ) =plp—1)...(p—k+ 1)by(z — )P + ..,

and
g(k+1)(z) =plp—1)...(p—k)bp(z — zp)(p_k_l) + ...
Therefore
9" (2)g®) (2) = Kb2(2 — 2,) % + .., (3.20)
k-1 k1 p—k 2 2p—2k
g* D (2)g* ) (2) :mep(z—zp) P4 (3.21)

where K = [p(p—1)...(p—k+1)]% Also
G2(2) =0 ((z— 2)® 7)) and Gs(z) = O ((z — 2,)* "),
where 2p — 2k +1 < 2p — i — j < 2p. Now from (3.15), (3.20) and (3.21), we have
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2 p—k 2
(k+1)cKb; kcp—k+1Kbp 41

O (z,) = - .
1(z) K02 k11

(3.22)

Therefore we arrive at a contradiction from (3.12) and (3.22). Thus in either cases one can easily say
that ¢ has no zeros. Since f and g share 0 CM, it follows that f and g have no zeros. But this is
impossible because zeros of f and g are of multiplicities at least k£ € N. Hence h; € C\ {0}. Then
from (3.6) we get h!™™ = 1. Therefore, we have f = tg, where t € C\ {0} such that ¢"+™ = 1.

Lemma 11 is proved.

Lemma 12 [4]. Let f be a meromorphic function on C with finitely many poles. If f has
bounded spherical derivative on C, then f is of order at most 1.

Lemma 13 (Zalcman’s [15, 23]). Let F' be a family of meromorphic functions in the unit disc
A and o be a real number satisfying —1 < o < 1. Then if F' is not normal at a point zy € A there
exist for each a with —1 < a < 1,

(1) points z, € A, z, — 2q,

(i) positive numbers py, pn — 07,

(iil) functions f, € F,
such that p,* fn(zn + pnC) — g(C) spherically uniformly on compact subset of C, where g is
a non-constant meromorphic function. The function g may be taken to satisfy the normalisation
g7 () <g*(0)=1,¢eC.

Lemma 14. Let f, g be two transcendental meromorphic functions having zeros of multiplicities
at least k € N, and let f"(L(f))™ — p, g"(L(g))™ — p share 0 CM and f, g share co IM, where
p(2)(# 0) is a polynomial and m,n € N. Then

FHL)) ™ (L(g)™ # .
Proof. Suppose

FUL)™g™(L(g)™ = p° (3.23)

Since f and g share oo IM, from (3.23) one can easily say that f and ¢ are transcendental entire
functions. We consider the following cases.

Case 1. Let deg(p) € N. Now from (3.23) it follows that N (r,0; f) = O(logr) and N(r,0;¢9) =
= O(logr). Let

fREEN™  d o L™

F= (3.24)

From (3.23) we get
FG=1. (3.25)

If F'=d1G, dy € C\ {0}, then F' € C\ {0}, which is impossible by Lemma 4. Hence F' # d;G.
Let

ML) —p

v =)

(3.26)
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Since f and ¢ are transcendental entire functions, it follows that f™(L(f))™ — p # oo and
9" (L(g))™ — p # oo. Also since f™"(L(f))™ — p and ¢"(L(g))"™ — p share 0 CM, we deduce
from (3.26) that

o =el, (3.27)
where § is an entire function. Let f; = F, fo» = —ePG and f3 = €. Here f; is transcendental.
Now from (3.27), we have fi; + fo + f3 = 1. Hence, by Lemma 6, we get

3

> ON(r0:f;) +
j=1

roof]

IIMw

< N(r,0; F) + N(r,0; eﬁG) + O(logr) < (A4 o(1))T1(r)

as r — +o0o, r € I, A < 1. So, by Lemma 5, we get either ¢’G = —1 or e® = 1. But here the only
possibility is that G = —1, i.e., g"(L(g))™ = —ePp and so from (3.23) we obtain F' = "G,
ie., fM(L(f))™ =eMg"(L(g))™, where 7, is a non-constant entire function. Then, from (3.23), we
get

FULP))™ = dae2™p and  g"(L(g)™ = dae™ 27 p, (3.28)

where do = +1. This shows that f™(L(f))™ and ¢g"(L(f))™ share 0 CM. Clearly, from (3.28), we
see F' and G are entire functions having no zeros.

Let z, be a zero of f(z) of multiplicity p(> k) and z, be a zero of g(z) of multiplicity ¢(> k).
Clearly z, will be a zero of f"(L(f))™ of multiplicity (n + 1)p — k and z, will be a zero of
g™ (L(g))™ of multiplicity (n + 1)g — k. Since f™(L(f))™ and g"(L(g))™ share 0 CM, it follows
that z, = z, and p = ¢. Consequently f(z) and g(z) share 0 CM. Since N(r,0; f) = O(logr) and
N(r,0;9) = O(logr), so we can take

f(2) = h(2)e®®) and  g(z) = h(z)e®@, (3.29)

where h(z) is a non-constant polynomial and «, /3 are two non-constant entire functions.
We deduce from (3.29) that

L))" =h (h, B, kB o o a(k)) elntma (3.30)

where

k‘ m
P, (h, h',...,h(k),a’,o/’,...,a(k)) — B (Zai Pu (h,h’,...,h(i),a’,a”,...,a(i)>> ,
1=0

P(hh, .. B9 o/ a”, ... o) is a differential polynomial in h,7,...,h" o/ a”, ... ),
1= 1,...,k, Pw :aoh and

g (L(g))™ = Py (h, N ON 0 ,N)) e(ntm)B (3.31)

where
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k m
=0

Poi(h, 1. .. B0 B B" ... 8%) is a differential polynomial in h,%’,...,h(0 g B" ... B0,
i=1,...,k, Py = aph. Let F = {F,} and G = {G,,}, where F,(z) = F(z +w) and G, (z) =
= G(z 4+ w), z € C. Clearly F and G are two families of entire functions defined on C. We now
consider following two subcases.

Subcase 1.1. Suppose that one of the families F and G, say F, is normal on C. Then by Marty’s
theorem F#(w) = F (0) < M for some M > 0 and for all w € C. Hence, by Lemma 12, we have
F' is of order at most 1. Now from (3.25), we obtain

p (SULN™) = p(F) = p(G) = p(g"(L(g))™) < 1. (3.32)
Consequently we get
FHEL(f(2))™ = dspe™  and g™ (2)(L(g(2)))™ = dape”, (3.33)

where a, b, d3, ds € C\ {0}. From (3.23) we see that a+b = 0. We claim that (n+m)a(z)—az € C
and (n+m)B(z) — bz € C. If possible suppose (n+m)a(z) —az ¢ C and (n+m)5(z) —bz & C.
Let a1(z) = (n+m)a(z) — az and B1(z) = (n +m)B(z) — bz. Note that

T (r,d)=m(r,d/) <m(r,(n+m)d/) + O(1) =m(r,a] +a) + O(1) <

<m(r,a}) +0(1) =m <(le) > +0(1) =5 (r,e™).

Clearly ¥ € S(ay) for i € N. Therefore P, € S(a;) and so % € S(oq). Similarly we have
1

% € S(B1). Now from (3.30), (3.31) and (3.33), we conclude that e®* € S(e*) and et € S(e),
2

which is a contradiction. Hence 4,37 € C and so both o and 3 are polynomials of degree 1.
Finally, we take

f(2) = dsh(z)e"” and g(z) = dgh(z)e™, (3.34)

where d5,dg € C\ {0}. Now from (3.34), we get

m

Fr)(L(f(2)™ = dit™hn(2) | aoh(z Z (Z 7 3= p ) gln+m)az

j=1
where we define 2(%)(z) = h(z). Similarly we obtain

9" (2)(L(g(2)))"™ =

m

_ dn+mhn aoh _|_ Z aj <Z Cj j il h( )( )) e—(n-f—m)az
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Since f™(L(f))™ and ¢"(L(g))™ share 0 CM, it follows that

k J
aoh(z) + Z a; <Z Clal ™ h(i)(z)> =
j=1 i=0

k J
=d7 | aoh(z) + Zaj (Z Cg(—l)j*iaj*i h(i)(z)> , (3.35)

j=1 i=0

where d7 € C\ {0}. But the relation (3.35) does not hold.

Subcase 1.2. Suppose that one of the families F and G, say F is not normal on C. Now by
Marty’s theorem there exists a sequence of meromorphic functions { F(z+w;)} C F, where z € {z:
|z| < 1} and {w;} C C is some sequence such that F# (w;) — 0o, as |w;| — co. Then by Lemma 13
there exist:

(i) points z;, |z;| < 1,

(ii) positive numbers p;, p; — 07,

(iii) a subsequence {F'(w; + z; + p;¢)} of {F(w; + 2)}
such that

~

hi(€) = p; P F(w; + 2 + psC) = h(C) (3.36)

spherically uniformly on compact subset of C, where iL(C ) is non-constant holomorphic function
such that h#(¢) < h#(0) = 1. Now from Lemma 12 we see that p(h) < 1. By Hurwitz’s theorem
we can see that h(¢) # 0. In the proof of Zalcman’s lemma (see [15, 23]) we see that

= 5] (3.37)
and
F#(b;) > F#(w;), (3.38)
where b; = w; + z;. Let
Bi(Q) = pGlw; + 2 + ;) (339)
(3.25) yields F(w; + zj + pj¢)G(wj + 2z; + pj¢) = 1 and so, from (3.36) and (3.39), we get
hi(Q)hi(¢) = 1. (3.40)
Now, from (3.36) and (3.40), we can deduce that
hi(€) = h(C) (3:41)

spherically uniformly on compact subset of C, where A(() is some non-constant holomorphic func-
tion in the complex plane. By Hurwitz’s theorem we can see that B(C ) # 0. From (3.36), (3.40) and
(3.41), we get

h(C)h(¢) = 1. (3.42)
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Now, from (3.42) and p(ﬁ) < 1, we see that

p(h) = p(h) < 1. (3.43)

Noting that h and h are transcendental entire functions having no zeros, we observe from (3.43) that

h(z) = dge®® and h(z) = dge”, (3.44)

where ¢, dg,dy € C\ {0} such that dgdg = 1. Also from (3.44), we have

>

3(() ' F/(wj+zj+ij)

_ '(€)
Q) F(wj + 2+ piC)

h
VS e 3.45
MG (349

spherically uniformly on compact subset of C. Now from (3.37) and (3.45), we obtain

>

h5(0)| _ o [t z) | 1+ [F(w; + )P [F'(wj +25)| _
S0 T F(wi+2) [F'(wj +2)]  |F(wj + )]
_ 1+ \F(wj + Zj)‘Q IAl/(O) — | (3.46)
[F(wj + )| h(0) ’
which implies that
lim F(wj + 2;) # 0, 00. (3.47)
Jj—o0
From (3.36) and (3.47) we see that
. _1
hj(O) =p; 2F(wj + Zj) — 00. (3.48)
Again from (3.36) and (3.44), we have
h;(0) —= h(0) = ¢1. (3.49)

Now from (3.48) and (3.49) we arrive at a contradiction.

Case 2. Let p € C\ {0}. Then from (3.23) we get f*(L(f))™g"(L(g))™ = b?, where f and g
are transcendental entire functions. Clearly f and g have no zeros. But this is impossible because
zeros of f and g are of multiplicities at least k € N.

Lemma 14 is proved.

Lemma 15. Let f, g be two transcendental meromorphic functions having zeros of multiplicities

FHEDN™ 9" (Lg)™

P
mk+ k> +k+2

at least k € N and let F = , where p(z)(#£ 0) is a polynomial and

m,n € N such that n > ? . Suppose f"(L(f))™ —p, g"(L(g))™ — p share (0, k1)
where k1 € NU{0}U{oo} and f, g share (00,0). If H = 0, then either f”( (F)™g™(L(g))™ = p?,
where f"(L(f))™ —p, g"(L(9))™ — p share 0 CM or f"(L(f))™ = g"(L(g))™
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F/ G/
F-12 - o

(ﬂ-p)l (Gl—P>,
p p
=dio ;
<F1—P>2 (Gl—p>2
p p
n m n m : Fi—p Gi—p
where F; = f"(L(f))™ and G1 = f™(L(g))™. This shows that and share 0 CM.

p p
Since F; — p and G; — p share (0, k;), it follows that F} — p and G; — p share 0 CM. Finally by
integration we get

Proof. Since H = 0, by integration, we get where dip € C\ {0},

1e.,

1 dieG+di —dio
F-1 G-1 ’

(3.50)

where dq1(# 0),d12 € C. We now consider the following cases.
Case 1. Let d12 # 0 and dy1 # dyo. If d1o = —1, then from (3.50) we have

—di1

F=—"——.
G—di—1

Therefore N(r,a + 1;G) = N(r,00; F) = N(r,00; f) + N(r,0;p). Now in view of Lemma 8 and
the second fundamental theorem we get

(n —m)T(r,g) <T(r,G) —mN(r,00;9) — N (r,0; (L(g))™) + S(r,g) <
< N(r,00;G) + N(r,0;G) + N(r,a+1;G) — mN(r,00;g) — N (r,0; (L(g))™) + S(r,g) <
< N(r,0;9) + N (r,0; (L(9))™) + N(r,00; f) = N (r,0; (L(g))™) + S(r, 9) <

< N(r,0;9) + N(r,00;9) + S(r,g) <

1 k—+1
S % N(T’,O,g) +N(7’,OO7Q) +S(T,g) S T T(Tag) +S(Tvg)7
which is contradiction since n > %
If d13 # —1, from (3.50) we obtain
1 —d
F— (1 + d) = dll p .
12 d%Q a4 12
di2
~ (. diz—du .\ _ + P ' =/ :
So, N |, T,G = N(r,o0; F) = N(r,00; f) + N(r,0;p). By using Lemma 8 and the
12
same argument as used in the case when d;o = —1, we can get a contradiction.

Case 2. Let dig # 0 and dy; = dis. If dio = —1, then from (3.50) we have FG = 1, i.e.,
SML) g™ (L(9))™ = p?, where f*(L(f))™ — p and g"(L(g))™ — p share 0 CM.
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If d1g # —1, from (3.50) we have

1 e
F (1+4+d12)G-1

— 1

Therefore N <r, 1—|—7d; G) = N(r,0; F). So, in view of Lemmas | and 8 and the second funda-
12

mental theorem we get

(n—m)T(r,g) <T(r,G) —mN(r,00;9) — N (r,0; (L(g))™) + S(r,g) <
< N(r,00;G) + N(r,0; G) —|—N(r,1+1dl2;G’> —m N(r,o00;g)—

=N (r,0; (L(9))™) + S(r,g) < N(r,0;9)+
+N (1,05 (L(9))™) + N(r,0; F) = N (r,0; (L(9))™) + S(r, 9) <
< N(r,0;9) + N(r,0; f) + N(r,0,L(f)) + S(r,g) <

< N(T7Oag) +N(T70a f) +Nk+1(r707f) +k3N(T,OO,f) +S(Tvg) <

< %m, 9) + % T(r, f) + T(r, f) + kT(r, f) + S(r, ) + S(r, 9).

We suppose that there exists a set  with infinite measure such that 7'(r, f) < T'(r,g) for r € I and
k* 4 k42

so for 7 € I we have (n —m) T(r,g) < 5

mk+k>+k+2

T(r,g) + S(r,g), which is a contradiction

since n > ?
Case 3. Let dy2 = 0. From (3.50) we obtain

G+dyp—1

F
d11

If d1; # 1 then we obtain N(r,1 — dy1;G) = N(r,0; F'). We can similarly deduce a contradiction
as in Case 2. Therefore d1; = 1 and so we obtain F' = G, i.e., f"(L(f))™ = ¢"(L(g))™.
Lemma 15 is proved.

Lemma 16 [1]. Let f and g be non-constant meromorphic functions sharing (1,k1), where
2 < ki <o0. Then

N L fl=2)+2N( L f|=3)+ ...+ (ki =) N(r, 15 f |[= k1) + k1 No(r,1; f)+

+(ki + ) NL(r,159) + ki Ny T (r,119) < N(r,159) - N(r, 1;9).
4. Proof of Theorem 1. Let £ — 1 FUD™ g = 9"(£9)™ Clearly F, G share (1, k1)

p p
except for the zeros of p and f, g share (o0, 0).
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Case 1. Let H # 0.

From (3.1) it can be easily calculated that the possible poles of H occur at (i) multiple zeros of
F and G, (ii) those 1 points of F' and G whose multiplicities are different, (iii) those poles of F' and
G whose multiplicities are different, (iv) zeros of F’ which are not the zeros of F'(F — 1), (v) zeros
of G’ which are not the zeros of G(G — 1). Since H has only simple poles we get

N(r,o0; H) < N.(r,00; f,9) + Nu(r,1; F,G) + N(r,0; F |> 2) + N(r,0; G |> 2)+
—I-No(?’, 0; FI) —+ No(r, 0; G/), (4.1)

where No(r,0; F') is the reduced counting function of those zeros of F’ which are not the zeros of
F(F—1) and N(r,0;G’) is similarly defined. Now from Nevanlinna’s fundamental estimate of the
logarithmic derivative we obtain m(r, H) = S(r, F') + S(r, G). Since

Tr,F)<[n+(k+1)m|T(r f)+S(rf), TrG) <[n+(k+1)m|T(r,g)+ S(rg),

it follows that
m(r, H) = S(r, f) + S(r, g).

Let zy be a simple zero of F' — 1 but p(z9) # 0. Clearly zj is a simple zero of G — 1. Then an
elementary calculation gives that H(z) = O(z — zp), which proves that 2y is a zero of H. By the
first fundamental theorem of Nevanlinna we get

N(r,l;F|=1) < N(r,0; H) <T(r,H)+ O(1) =

= N(r,00; H) +m(r, H) + O(1) < N(r,00; H) + S(r, f) + 5(r,9). (4.2)
By using (4.1) and (4.2), we obtain

N(r,;F) < N(r;F|=1)+ N(r,1;F |[>2) <
< Nu(r,00; f,9) + N(r,0; F |[>2)+ N(r,0;G |> 2) + Nu(r,1; F,G)+
+N(r,1; F |>2) + No(r,0; F') + No(r,0;G') + S(r, f) + S(r,g) <
< N(ryo0; f) + N(r,0; F |[>2) + N(r,0;G |> 2) + Nu(r, 1; F,G)+

+N(7", 1a F |Z 2) + NO(ra Oa F/) + NO(ra 07 G/) + S(’I", f) + S(ng) (43)
Now in view of Lemmas 2 and 16 we have

No(r,0;G") + N(r, 1, F' |2 2) + Nu(r, , F, G) <
< No(r,0;G )+ N(r,; F|=2)+ N(r, ;F |=3)+ ... + N(r, ; F |= k1)+
+N%l+l(r, LE)+NL(r,;F)+ Np(r,1;G) + Nu(r, 15 F,G) <
< No(r,0;G)=N(r,;F|=3)—...— (k1 —=2)N(r, 1, F |= k1) —
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(k1 — )NL(r LLF) — ki NL(r, 1, G) — (k1 — DN (1, )+
+N(r,1;G) — N(r,1;G) + N.(r,; F,G) <
< No(r,0:G') + N(r, 1,6G) = N(r, 1;G) — (k1 = 2)N 1 (1, i F) — (k1 — DN (r, 15 G) <
<N 0;G'|G#0)— (ki —2)Np(r,1;F) — (k1 — 1)Np(r,1;G) <

< N(r,0;G) + N(r,00;9) — (k1 = 2)Np(r, 1; F) — (k1 = )N(r,1;G) =
= N(r,0;G) + N(r,00;9) — (k1 —2)N«(r,1; F,G) — Np(r,1; G). (4.4)
Hence, by using (4.3), (4.4) and Lemma 1, we get from second fundamental theorem that
T(r,F) < N(r,0;F)+ N(r,00; F) + N(r,1; F) — No(r,0; F') <
< 2N(r,00, f) + Na(r,0; F) + N(r,0;G |>2) + N(r,1; F |> 2)+
+N.(r,1; F,G) + No(r,0;G") + S(r, f) + S(r,g) <
< 3 N(r,00; f) + No(r,0; F) + No(r,0;G) — (k1 — 2) Nu(r, 1; F, G)+
+8(r, f) +S(r,g) < 3N(r,00; f) + 2N (r,0; f) + No (r,0; (L(f))™) +
+2N (1,05 9) + mNa(r,0; L(g)) — (k1 — 2) No(r, 1; F,G) + S(r, ) + S(r,9) <
< 3N(r, 003 f) +2N(r,0; f) + N (1,05 (L(f))™) + 2N (r,0; )+
+m Nii2(r,0;9) + mk N(r,00;9) — (k1 —2) Nu(r, 1, F,G) + S(r, f) + S(r,g) <

< (3+mk)N(r,00; f) + 2N(r,0; f) + 2N (r,0; g) +mN(r,0; g)+

+N (r,0; (L(f)™) — (k1 —2)Nu(r, 1; F,G) + S(r, f) + S(r, g). 4.5)
Now, by using Lemmas 7 and 8, we get from (4.5)
(n_m)T(va) < T(T7F) _mN(T7OO;f) _N(Tv[),(ﬁ(f))m) +S(T,f) <

<3+ (k—1)m)N(r,o0; f) +2N(r,0; f) + 2N (r,0;9) + m N(r,0; g)—

—(k‘l—2)N*(T‘,1;F,G)+S(T,f)+S(T,g) <

(k+1)B+(k—1)m)

S Entm+ (m_2k 1)

(T(r, f) +T(r,9))+

3+ (k—1)m —

—I—g (T(r, f)+T(r,g9)) + nEmt (m—2k—1 N.(r,1;F,G)+

k
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+’I7’LT(7“,g) - (kl - 2)N*(7", 1;F7 G) + S(T, f) + S(r,g) S

(mk +4)n +m?k* + (m* +3m — 2) k+2(m + 1)
= < E(n+m+ (m—2)k —1) ) T(r) + 5(r). (46)

In a similar way we can obtain

(mk +4)n+m?k* + (m?* + 3m — 2) k + 2(m + 1)
En+m+ (m—2)k—1)

(n—m)T(r,g) < ( > T(r)+ S(r). (4.7)

Combining (4.6) and (4.7) we see that

(mk +4)n+m?k? + (m? +3m — 2) k+2(m + 1)
kE(n+m+ (m—2)k—1)

(n—m)T(r) < ( ) T(r)+ S(r),

ie.,
(k(n — K1)(n — K3)) T(r) < S(r), (4.8)

where

(2—m)k*+ (m+ Dk +4+ VL4

(2—m)k*+ (m+ Dk +4—+IL
2k ’

Ky —
! 2%

Ky =
Li=[2=m)k+ (m+ Dk +4 +8k {(m*> —m) kK + (m*+m—1)k+ (m+1)} =
= m2k* + 9m2k? + 2mk? + 6m2k3 — 6mk3+
+4kH (1 —m) + 16k(m + 1) + 9k + 4k® + 16 <
< m?kt + 9m?k? + 6m2k3 + 10mk? — 2mk® + 16(3m — 1)k+

2 + 64 + 8K2(1 — m) + 4kP (1 — m) + 32k(1 —m) < [mk® + (3m — 1)k + 8]%.

Therefore,
K < 2-m)k*+(m+Dk+4+mk?+ (3m—1)k+8 k*+2mk+6
! 2k - k '
k* 4+ 2mk + 6
Since n > u, (4.8) leads to a contradiction.

Case 2. Let H = 0. Then theorem follows from Lemmas 15, 11 and 14.
Theorem 1 is proved.
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