Groups all cyclic subgroups of which are BN A-subgroups

  • X. He
  • S. Li
  • Youyu Wang


Suppose that $G$ is a finite group and $H$ is a subgroup of $G$. We say that $H$ is a BN A-subgroup of $G$ if either $H^x = H$ or $x \in \langle H, H^x\rangle$ for all $x \in G$. The BN A-subgroups of $G$ are between normal and abnormal subgroups of $G$. We obtain some new characterizations for finite groups based on the assumption that all cyclic subgroups are BN A-subgroups.
How to Cite
He, X., S. Li, and Y. Wang. “Groups All Cyclic Subgroups of Which Are BN A-Subgroups”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 69, no. 2, Feb. 2017, pp. 284-8,
Short communications