On principal ideal multiplication modules

  • A. Azizi
  • C. Jayaram

Abstract

Let $R$ be a commutative ring with identity and let $M$ be a unitary $R$-module. A submodule $N$ of $M$ is said to be a multiple of $M$ if $N = rM$ for some $r \in R$. If every submodule of $M$ is a multiple of $M$, then $M$ is said to be a principal ideal multiplication module. We characterize principal ideal multiplication modules and generalize some results from [Azizi A. Principal ideal multiplication modules // Algebra Colloq. – 2008. – 15. – P. 637 – 648].
Published
25.03.2017
How to Cite
AziziA., and JayaramC. “On Principal Ideal Multiplication Modules”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 69, no. 3, Mar. 2017, pp. 291-9, http://umj.imath.kiev.ua/index.php/umj/article/view/1696.
Section
Research articles