Skip to main content
Log in

On the Radius of Injectivity for Generalized Quasiisometries in the Spaces of Dimension Higher Than Two

  • Published:
Ukrainian Mathematical Journal Aims and scope

We consider a class of local homeomorphisms more general than the mappings with bounded distortion. Under these homeomorphisms, the growth of the p-module (n−1 < p ≤ n) of the families of curves is controlled by an integral containing an admissible metric and a measurable function Q. It is shown that, under generic conditions imposed on the majorant Q, this class has a positive radius of injectivity (and, hence, a ball in which every mapping is homeomorphic). Moreover, one of the conditions imposed on Q is not only sufficient but also necessary for existence of a radius of injectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Ya. Gutlyanskii, V. I. Ryazanov, U. Srebro, and E. Yakubov, The Beltrami Equation: A Geometric Approach, Springer, New York (2012).

    Book  Google Scholar 

  2. O. Martio, V. Ryazanov, U. Srebro, and E. Yakubov, Moduli in Modern Mapping Theory, Springer, New York (2009).

    MATH  Google Scholar 

  3. E. A. Sevost’yanov, “On some properties of generalized quasiisometries with unbounded characteristic,” Ukr. Mat. Zh., 63, No. 3, 385–398 (2011); English translation: Ukr. Math. J., 63, No. 3, 443–460 (2011).

  4. V. A. Zorich, “Lavrent’ev theorem on quasiconformal mappings of a space,” Mat. Sb., 116, No. 3, 415–433 (1967).

    Google Scholar 

  5. O. Martio, S. Rickman, and J. Väisälä, “Topological and metric properties of quasiregular mappings,” Ann. Acad. Sci. Fenn., Ser. A1, 488, 1–31 (1971).

    Google Scholar 

  6. S. Rickman, “Quasiregular mappings,” Res. Math. Relat. Areas, 26, No. 3 (1993).

  7. M. Perović, “On the problem of radius of injectivity for the mappings quasiconformal in the mean,” Glas. Mat. Ser. III, 20(40), No. 2, 345–348 (1985).

    Google Scholar 

  8. O. Martio and U. Srebro, “Locally injective automorphic mappings in ℝn ,Math. Scand., 85, No. 1, 49–70 (1999).

    MATH  MathSciNet  Google Scholar 

  9. V. I. Semenov, “Integral condition for the local homeomorphism of mappings with generalized derivatives,” Sib. Mat. Zh., 40, No. 6, 1339–1346 (1999).

    Article  MATH  Google Scholar 

  10. P. Koskela, J. Onninen, and K. Rajala, Mappings of Finite Distortion: Injectivity Radius of a Local Homeomorphism, Preprint No. 266, University of Jyväskylä, Jyväskylä (2002).

  11. M. Cristea, “Local homeomorphisms having local ACLn inverses,” Complex Var. Ellipt. Equat., 53, No. 1, 77–99 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  12. V. Ya. Gutlyanskii, O. Martio, V. I. Ryazanov, and M. Vuorinen, “On convergence theorems for space quasiregular mappings,” Forum Math., 10, No. 3, 353–375 (1998).

    Article  MathSciNet  Google Scholar 

  13. C. J. Bishop, V. Ya. Gutlyanskii, O. Martio, and M. Vuorinen, “On conformal dilatation in space,” Int. J. Math. Math. Sci., 22, 1397–1420 (2003).

    Article  MathSciNet  Google Scholar 

  14. A. Golberg, “Differential properties of (α,Q)-homeomorphisms,” in: Further Progress in Analysis, World Scientific, Singapore (2009), pp. 218–228.

  15. E. A. Poletskii, “Method of moduli for nonhomeomorphic quasiconformal mappings,” Mat. Sb., 83, No. 2, 261–272 (1970).

    MathSciNet  Google Scholar 

  16. F. Gehring, “Lipschitz mappings and p-capacity of rings in n-space,” Ann. Math. Stud., 66, 175–193 (1971).

    MathSciNet  Google Scholar 

  17. V. M. Gol’dshtein and Yu. G. Reshetnyak, Introduction to the Theory of Functions with Generalized Derivatives and Quasiconformal Mappings [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  18. K. Kuratowski, Topology, Vol. 2, Academic Press, New York (1968).

    Google Scholar 

  19. J. Väisälä, Lectures on n-Dimensional Quasiconformal Mappings, Springer, Berlin (1971).

    MATH  Google Scholar 

  20. S. Saks, Theory of the Integral [Russian translation], Inostr. Lit., Moscow (1949).

    Google Scholar 

  21. P. Caraman, “Relations between p-capacity and p-module (I),” Rev. Roum. Math. Pures Appl., 39, No. 6, 509–553 (1994).

    MATH  MathSciNet  Google Scholar 

  22. R. R. Salimov and E. A. Sevost’yanov, “Analogs of the Ikoma–Schwartz lemma and Liouville theorem for mappings with unbounded characteristic,” Ukr. Mat., Zh., 63, No. 10, 1368–1380 (2011); English translation: Ukr. Math. J., 63, No. 10, 1551–1565 (2012).

  23. Yu. G. Reshetnyak, Space Mappings with Bounded Distortion [in Russian], Nauka, Novosibirsk (1982).

    Google Scholar 

  24. A. Ignat’ev and V. Ryazanov, “Finite mean oscillation in the theory of mappings,” Ukr. Mat. Vestn., 2, No. 3, 395–417 (2005).

    MATH  MathSciNet  Google Scholar 

  25. R. R. Salimov and E. A. Sevost’yanov, “The Poletskii and Väisälä inequalities for the mappings with (p, q)-distortion,” Complex Var. Ellipt. Equat., 59, No. 2, 217–231 (2014).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 67, No. 2, pp. 174–184, February, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gol’berg, A.L., Sevost’yanov, E.A. On the Radius of Injectivity for Generalized Quasiisometries in the Spaces of Dimension Higher Than Two. Ukr Math J 67, 199–210 (2015). https://doi.org/10.1007/s11253-015-1074-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-015-1074-4

Keywords

Navigation