Skip to main content
Log in

On the Limit Behavior of a Sequence of Markov Processes Perturbed in a Neighborhood of the Singular Point

  • Published:
Ukrainian Mathematical Journal Aims and scope

We study the limit behavior of a sequence of Markov processes whose distributions outside any neighborhood of a “singular” point are attracted to a certain probability law. In any neighborhood of this point, the limit behavior can be irregular. As an example of application of the general result, we consider a symmetric random walk with unit jumps perturbed in the neighborhood of the origin. The invariance principle is established for the standard time and space scaling. The limit process is a skew Brownian motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. M. Harrison and L. A. Shepp, “On skew Brownian motion,” Ann. Probab., 9, No. 2, 309–313 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  2. R. A. Minlos and E. A. Zhizhina, “Limit diffusion process for an inhomogeneous random walk on the one-dimensional lattice,” Usp. Mat. Nauk, 52, No. 2, 87–100 (1997).

    Article  MathSciNet  Google Scholar 

  3. D. A. Yarotskii, “Invariance principle for an inhomogeneous random walk on the ℤ1 lattice” Mat. Zametki, 66, No. 3, 459–472 (1999).

    Article  MathSciNet  Google Scholar 

  4. A. Yu. Pylypenko and Yu. E. Prykhod’ko, “On the limit behavior of symmetric random walks with membranes,” Teor. Imovir. Mat. Statyst., Issue 85, 84–94 (2011).

  5. A. Yu. Pilipenko and Yu. E. Prykhodko, “Limit behavior of a simple random walk with non-integrable jump from a barrier,” Theory Stochast. Proc., 19(35), No. 1, 52–61 (2014).

  6. N. Enriquez and Y. Kifer, “Markov chains on graphs and Brownian motion,” J. Theor. Probab., 14, No. 2, 495–510 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  7. M. I. Freidlin and A. D. Wentzel, “Diffusion processes on graphs and the averaging principle,” Ann. Probab., 21, No. 4, 2215–2245 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  8. A. M. Kulik, A Limit Theorem for Diffusions on Graphs with Variable Configuration, Preprint arXiv:math/0701632 (2007).

  9. S. R. S. Varadhan and R. J.Williams, “Brownian motion in a wedge with oblique reflection,” Comm. Pure Appl. Math., 38, 405–443 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  10. Y. Kwon, “The submartingale problem for Brownian motion in a cone with nonconstant oblique reflection,” Probab. Theory Relat. Fields, 92, No. 3, 351–391 (1992).

    Article  MATH  Google Scholar 

  11. Y. Kwon and R. J. Williams, “Reflected Brownian motion in a cone with radially homogeneous reflection field,” Trans. Amer. Math. Soc., 327, No. 2, 739–780 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  12. R. Bafico and P. Baldi, “Small random perturbations of Peano phenomena,” Stochastics, 6, No. 3–4, 279–292 (1982).

  13. I. G. Krykun and S. Ya. Makhno, “Peano phenomena for Itˆo equations,” Ukr. Mat. Visn., 10, No. 1, 87–109 (2013).

    MathSciNet  Google Scholar 

  14. B. P. Kharlamov, Continuous Semi-Markov Processes [in Russian], Nauka, Moscow (2001).

    Google Scholar 

  15. V. Skorokhod, Investigations into the Theory of Random Processes [in Russian], Kiev University, Kiev (1961).

    Google Scholar 

  16. O. Kallenberg, Foundations of Modern Probability, Springer, New York (1997).

    MATH  Google Scholar 

  17. P. Billingsley, Convergence of Probability Measures, Wiley, New York (1968).

    MATH  Google Scholar 

  18. S. Ethier and T. Kurtz, Markov Processes. Characterization and Convergence, Wiley, New York (1986).

  19. A. F. Karr, “Weak convergence of a sequence of Markov chains,” Z. Wahrscheinlichkeitstheor. Verw. Geb., 33, No. 1, 41–48 (1975/76).

  20. A. Lejay, “On the constructions of the skew Brownian motion,” Probab. Surv., 3, 413–466 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  21. W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 1, Wiley, New York (1966).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 67, No. 4, pp. 499–516, April, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pilipenko, A.Y., Prikhod’ko, Y.E. On the Limit Behavior of a Sequence of Markov Processes Perturbed in a Neighborhood of the Singular Point. Ukr Math J 67, 564–583 (2015). https://doi.org/10.1007/s11253-015-1101-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-015-1101-5

Keywords

Navigation