Skip to main content
Log in

Schrödinger Operators with Distributional Matrix Potentials

  • Published:
Ukrainian Mathematical Journal Aims and scope

We study 1D Schrödinger operators L(q) with distributional matrix potentials from the negative space H − 1unif (,  m × m). In particular, the class H − 1unif (,  m × m) contains periodic and almost periodic generalized functions. We establish the equivalence of different definitions of the operators L(q), investigate their approximation by operators with smooth potentials q ∈ L 1unif (,  m × m), and also prove that the spectra of operators L(q) belong to the interior of a certain parabola.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Albeverio, F. Gestezy, R. Hoegh Krohn, and H. Holden, Solvable Models in Quantum Mechanics, American Mathematical Society, Chelsea Publ., Providence, RI (2005).

    MATH  Google Scholar 

  2. S. Albeverio and P. Kurasov, Singular Perturbations of Differential Operators. Solvable Schrödinger Type Operators, Cambridge Univ. Press, Cambridge (2000).

  3. S. Albeverio, A. Kostenko, and M. Malamud, “Spectral theory of semibounded Sturm–Liouville operators with local point interactions on a discrete set,” J. Math. Phys., 51, No. 10 (2010).

  4. V. Bruk, “Invertible linear relations generated by an integral equation with Nevanlinna measure,” Rus. Math. (Izv. Vuzov), 57, No. 2, 13–24 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Eckhardt, F. Gesztesy, R. Nichols, and G. Teschl, “Supersymmetry and Schrödinger-type operators with distributional matrixvalued potentials,” J. Spectr. Theory, 4, No. 4, 715–768 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Eckhardt, F. Gesztesy, R. Nichols, and G. Teschl, “Weyl–Titchmarsh theory for Sturm–Liouville operators with distributional potentials,” Opusc. Math., 33, No. 3, 467–563 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  7. W. Everitt and L. Markus, Boundary Value Problems and Symplectic Algebra for Ordinary Differential and Quasi-Differential Operators, American Mathematical Society, Providence, RI (1999).

    MATH  Google Scholar 

  8. Yu. Golovaty, “Schrödinger operators with αδ′ + βδ -like potentials: norm resolvent convergence and solvable models,” Meth. Funct. Anal. Topol., 18, No. 3, 243–255 (2012).

    MathSciNet  MATH  Google Scholar 

  9. A. Goriunov and V. Mikhailets, “Regularization of singular Sturm–Liouville equations,” Meth. Funct. Anal. Topol., 16, No. 2, 120–130 (2010).

    MathSciNet  MATH  Google Scholar 

  10. A. Goriunov, V. Mikhailets, and K. Pankrashkin, “Formally self-adjoint quasi-differential operators and boundary value problems,” Electron. J. Different. Equat. (2013).

  11. R. Hryniv and Ya. Mykytyuk, “Schrödinger operators with periodic singular potentials,” Meth. Funct. Anal. Topol., 7, No. 4, 31–42 (2001).

    MathSciNet  MATH  Google Scholar 

  12. R. Hryniv and Ya. Mykytyuk, “Self-adjointness of Schrödinger operators with singular potentials,” Meth. Funct. Anal. Topol., 18, No. 2, 152–159 (2012).

    MathSciNet  MATH  Google Scholar 

  13. T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin (1995).

    MATH  Google Scholar 

  14. A. Kostenko and M. Malamud, “1-D Schrödinger operators with local point interactions on a discrete set,” J. Different. Equat., 249, 253–304 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  15. R. de L. Kronig and W. G. Penny, “Quantum mechanics of electrons in crystal lattices,” Proc. Roy. Soc. London A, 130, 499–513(1931).

  16. B. Levitan, Almost Periodic Functions [in Russian], Gostekhtheorizdat, Moscow (1953).

    Google Scholar 

  17. V. Mikhailets and V. Molyboga, “Schr¨odinger operators with complex singular potentials,” Meth. Funct. Anal. Topol., 19, No. 1, 16–28 (2013).

    MathSciNet  MATH  Google Scholar 

  18. V. Mikhailets and V. Molyboga, “Remarks on Schr¨odinger operators with singular matrix potential,” Meth. Funct. Anal. Topol., 19, No. 2, 161–167 (2013).

    MathSciNet  MATH  Google Scholar 

  19. K. Mirzoev and T. Safonova, “Singular Sturm–Liouville operators with distribution potential on the spaces of vector functions,” Dokl. Math., 84, No. 3, 791–794 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Naimark, Linear Differential Operators [in Russian], Nauka, Moscow (1969).

    Google Scholar 

  21. A. Savchuk and A. Shkalikov, “Sturm–Liouville operators with distribution potentials,” Tr. Mosk. Mat. Obshch., 64, 159–212 (2003).

    MathSciNet  Google Scholar 

  22. K. Schmüdgen, Unbounded Self-Adjoint Operators on Hilbert Space, Springer, Dordrecht (2012).

    Book  MATH  Google Scholar 

  23. J. Weidmann, Spectral Theory of Ordinary Differential Operators, Springer, Berlin (1987).

    MATH  Google Scholar 

  24. A. Zettl, “Formally self-adjoint quasi-differential operator,” Rocky Mountain J. Math., 5, No. 3, 453–474 (1975).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 67, No. 5, pp. 657–671, May, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moliboga, V.N. Schrödinger Operators with Distributional Matrix Potentials. Ukr Math J 67, 748–763 (2015). https://doi.org/10.1007/s11253-015-1112-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-015-1112-2

Keywords

Navigation