Skip to main content
Log in

Analog of the Montel Theorem for Mappings of the Sobolev Class with Finite Distortion

  • Published:
Ukrainian Mathematical Journal Aims and scope

We study the classes of mappings with unbounded characteristic of quasiconformality and obtain a result on the normal families of open discrete mappings f : D→\ {a, b} from the class W loc 1,1 with finite distortion that do not take at least two fixed values a 6≠b in ℂ whose maximal dilatation has a majorant of finite mean oscillation at every point. This result is an analog of the well-known Montel theorem for analytic functions and is true, in particular, for the so-called Q-mappings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Montel, Families Normales de Fonctions Analytiques, Gauthier-Villars, Paris (1927).

    Google Scholar 

  2. E. A. Sevost’yanov, “Theory of moduli, capacities, and normal families of mappings admitting branching,” Ukr. Mat. Vestn., 4, No. 4, 582–604 (2007).

    MathSciNet  Google Scholar 

  3. V. G. Maz’ya, Sobolev Spaces [in Russian], Leningrad University, Leningrad (1985).

    Google Scholar 

  4. L. V. Ahlfors, Lectures on Quasiconformal Mappings, Van Nostrand, Toronto (1966).

    MATH  Google Scholar 

  5. T. Iwaniec and G. Martin, Geometrical Function Theory and Non-Linear Analysis, Clarendon Press, Oxford (2001).

    Google Scholar 

  6. A. Ignat’ev and V. Ryazanov, “Finite mean oscillation in the mapping theory,” Ukr. Mat. Vestn., 2, No. 3, 395–417 (2005).

    MathSciNet  MATH  Google Scholar 

  7. J. Väisälä, Lectures on n-Dimensional Quasiconformal Mappings, Springer, Berlin (1971).

    MATH  Google Scholar 

  8. O. Martio, V. Ryazanov, U. Srebro, and E. Yakubov, Moduli in Modern Mapping Theory, Springer Science + Business Media, LLC, New York (2009).

  9. S. Stoilow, Principes Topologiques de la Théorie des Fonctions Analytiques, Gauthier-Villars, Paris (1956).

    MATH  Google Scholar 

  10. T. Rado and P. V. Reichelderfer, Continuous Transformations in Analysis, Springer, Berlin (1955).

    Book  MATH  Google Scholar 

  11. O. Martio, S. Rickman, and J. Väisälä, “Definitions for quasiregular mappings,” Ann. Acad. Sci. Fenn., Ser. A1, 448, 1–40 (1969).

  12. T. Lomako, R. Salimov, and E. Sevost’yanov, “On equicontinuity of solutions to the Beltrami equations,” Ann. Univ. Bucharest (Math. Ser.), 59, No. 2, 261–271 (2010).

    MathSciNet  Google Scholar 

  13. V. Ryazanov, R. Salimov, and E. Sevost’yanov, “On convergence analysis of space homeomorphisms,” Sib. Adv. Math., 23, No. 4, 263–293 (2013).

    Article  Google Scholar 

  14. D. A. Kovtonyuk, R. R. Salimov, and E. A. Sevost’yanov, On the Mapping Theory of Sobolev and Orlicz–Sobolev Classes [in Russian], Naukova Dumka, Kiev (2013).

    Google Scholar 

  15. R. Salimov and E. Sevost’yanov, “Theory of ring Q-mappings in the geometric theory of functions,” Mat. Sb., 201, No. 6, 131–158 (2010).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 67, No. 6, pp. 829–837, June, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sevost’yanov, E.A. Analog of the Montel Theorem for Mappings of the Sobolev Class with Finite Distortion. Ukr Math J 67, 938–947 (2015). https://doi.org/10.1007/s11253-015-1124-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-015-1124-y

Keywords

Navigation