Skip to main content
Log in

Generalized Bombieri–Lagarias’ Theorem and Generalized Li’s Criterion with its Arithmetic Interpretation

  • Published:
Ukrainian Mathematical Journal Aims and scope

We show that Li’s criterion equivalent to the Riemann hypothesis, i.e., the statement that the sums

$$ {k}_n={\Sigma}_{\uprho}\left(1-{\left(1-\frac{1}{\uprho}\right)}^n\right) $$

over zeros of the Riemann xi-function and the derivatives

$$ \begin{array}{ccc}\hfill {\uplambda}_n\equiv \frac{1}{\left(n-1\right)!}\frac{d^n}{d{z}^n}{\left.\left({z}^{n-1} \ln \left(\upxi (z)\right)\right)\right|}_{z=1},\hfill & \hfill \mathrm{where}\hfill & \hfill n=1,2,3,\dots, \hfill \end{array} $$

are nonnegative if and only if the Riemann hypothesis is true, can be generalized and the nonnegativity of certain derivatives of the Riemann xi-function estimated at an arbitrary real point a, except a = 1/2, can be used as a criterion equivalent to the Riemann hypothesis. Namely, we demonstrate that the sums

$$ {k}_{n,a}={\Sigma}_{\uprho}\left(1-{\left(\frac{\uprho -a}{\uprho +a-1}\right)}^n\right) $$

for any real a such that a < 1/2 are nonnegative if and only if the Riemann hypothesis is true (correspondingly, the same derivatives with a > 1/2 should be nonpositive). The arithmetic interpretation of the generalized Li’s criterion is given. Similarly to Li’s criterion, the theorem of Bombieri and Lagarias applied to certain multisets of complex numbers is also generalized along the same lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. C. Titchmarsh and E. R. Heath-Brown, The Theory of the Riemann Zeta-Function, Clarendon Press, Oxford (1988).

    Google Scholar 

  2. X.-E. Li, “The positivity of a sequence of numbers and the Riemann hypothesis,” J. Number Theory, 65, 325–333 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  3. E. Bombieri and J. C. Lagarias, “Complements to Li’s criterion for the Riemann hypothesis,” J. Number Theory, 77, 274–287 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  4. S. K. Sekatskii, S. Beltraminelli, and D. Merlini, “On equalities involving integrals of the logarithm of the Riemann-function and equivalent to the Riemann hypothesis,” Ukr. Math. J., 64, No. 2, 218–228 (2012).

    Article  MathSciNet  Google Scholar 

  5. E. C. Titchmarsh, The Theory of Functions, Oxford Univ. Press, Oxford (1939).

    MATH  Google Scholar 

  6. F. T. Wang, “A note on the Riemann Zeta-function,” Bull. Amer. Math. Soc., 52, 319–321 (1946).

    Article  MATH  MathSciNet  Google Scholar 

  7. S. K. Sekatskii, S. Beltraminelli, and D. Merlini, “A few equalities involving integrals of the logarithm of the Riemann-function and equivalent to the Riemann hypothesis III. Exponential weight functions,” arXiv, 1006.0323v2.

  8. S. K. Sekatskii, S. Beltraminelli, and D. Merlini, “A few equalities involving integrals of the logarithm of the Riemann-function and equivalent to the Riemann hypothesis I,” arXiv, 0806.1596v1.

  9. M. Balazard, E. Saias, and M. Yor, “Notes sur la fonction de Riemann,” Adv. Math., 143, 284–287 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Weil, “Sur les “formules explicites” de la théorie des nombres premiers,” Meddelanden Fran Lunds Univ. Math. Sem. (dedié a M. Riesz), 252–265 (1952) (see also A. Weil OEvres scientifique, Collected papers, Springer, New York (1980), Vol. 2, pp. 48–61).

  11. E. Bombieri, “Remarks on Weil’s quadratic functional in the theory of prime numbers I,” Rend. Mat. Accad. Lincei, 9, 183–233 (2000).

    MathSciNet  Google Scholar 

  12. L. Smajlovic, “On Li’s criterion for the Riemann hypothesis for the Selberg class,” J. Number Theory, 130, 828–851 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  13. I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Series, and Products, Academic, New York (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 66, No. 3, pp. 371–383, March, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekatskii, S.K. Generalized Bombieri–Lagarias’ Theorem and Generalized Li’s Criterion with its Arithmetic Interpretation. Ukr Math J 66, 415–431 (2014). https://doi.org/10.1007/s11253-014-0940-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-014-0940-9

Keywords

Navigation