On Countable Almost Invariant Partitions of <em class="a-plus-plus">G</em>-Spaces

  • A. B. Kharazishvili

Abstract

For any σ -finite G-quasiinvariant measure μ given in a G-space, which is G-ergodic and possesses the Steinhaus property, it is shown that every nontrivial countable μ-almost G-invariant partition of the G-space has a μ-nonmeasurable member.
Published
25.04.2014
How to Cite
KharazishviliA. B. “On Countable Almost Invariant Partitions of <em class="a-Plus-plus">G</Em&gt;-Spaces”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 66, no. 4, Apr. 2014, pp. 510–517, http://umj.imath.kiev.ua/index.php/umj/article/view/2153.
Section
Research articles