Skip to main content
Log in

Homotopic Properties of the Spaces of Smooth Functions on a 2-Torus

  • Published:
Ukrainian Mathematical Journal Aims and scope

Let f : T 2 → ℝ be a Morse function on a 2-torus, let S(f) and \( \mathcal{O} \)(f) be, respectively, its stabilizer and orbit with respect to the right action of the group \( \mathcal{D} \)(T 2) of diffeomorphisms of T 2, let \( \mathcal{D} \) id(T 2), be the identity path component of the group \( \mathcal{D} \)(T 2), and let S′(f) = S(f) ∩ \( \mathcal{D} \) id(T 2). We present sufficient conditions under which

$$ {\uppi}_1\mathcal{O}(f)={\uppi}_1{\mathcal{D}}_{\mathrm{id}}\left({T}^2\right)\times {\uppi}_0S^{\prime }(f)\equiv {\mathrm{\mathbb{Z}}}^2\times {\uppi}_0S^{\prime }(f). $$

The obtained result is true for a larger class of functions whose critical points are equivalent to homogeneous polynomials without multiple factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. V. Sharko, “Functions on surfaces. I,” in: Some Problems of Contemporary Mathematics, Proc. of the Institute of Mathematics, Ukrainian National Academy of Sciences [in Russian], Kiev, 25 (1998), pp. 408–434.

  2. E. A. Kudryavtsev, “Realization of smooth functions on surfaces in the form of functions of height,” Mat. Sb., 190, No. 3, 29–88 (1999).

    Article  MathSciNet  Google Scholar 

  3. S. Maksymenko, “Path-components of Morse mappings spaces of surfaces,” Comment. Math. Helv., 80, No. 3, 655–690 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  4. E. A. Kudryavtseva, “On the topological type of spaces of Morse functions on surfaces,” Mat. Sb., 204, No. 1, 79–118 (2013).

    Article  MathSciNet  Google Scholar 

  5. V. Poénaru, “Un théorème des fonctions implicites pour les espaces d’applications C ,Inst. Hautes Études Sci. Publ. Math., No. 38, 93–124 (1970).

  6. F. Sergeraert, “Un théorème de fonctions implicites sur certains espaces de Fréchet et quelques applications,” Ann. Sci. École Norm. Super., 5, 599–660 (1972).

    MATH  MathSciNet  Google Scholar 

  7. S. Maksymenko, “Homotopy types of stabilizers and orbits of Morse functions on surfaces,” Ann. Global Anal. Geom., 29, No. 3, 241–285 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  8. S. Maksymenko, “Functions with isolated singularities on surfaces,” in: Geometry and Topology of Functions on Manifolds, Proc. of the Institute of Mathematics, Ukrainian National Academy of Sciences, 7, No. 4 (2010), pp. 7–66.

  9. C. J. Earle and J. Eells, “A fibre bundle description of Teichmüller theory,” J. Different. Geom., 3, 19–43 (1969).

    MATH  MathSciNet  Google Scholar 

  10. C. J. Earle and A. Schatz, “Teichmüller theory for surfaces with boundary,” J. Different. Geom., 4, 169–185 (1970).

    MATH  MathSciNet  Google Scholar 

  11. A. Gramain, “Le type d’homotopie du groupe des difféomorphismes d’une surface compacte,” Ann. Sci. École Norm. Super., 6, 53–66 (1973).

    MATH  MathSciNet  Google Scholar 

  12. S. I. Maksimenko, “Homotopic types of right stabilizers and orbits of smooth functions on surfaces,” Ukr. Mat. Zh., 64, No. 9, 1186–1203 (2012); English translation: Ukr. Math. J., 64, No. 9, 1350–1369 (2013).

  13. E. A. Kudryavtseva and A. T. Fomenko, “Symmetry groups of regular Morse functions on surfaces,” Dokl. Akad. Nauk, 446, No. 6, 615–617 (2012).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 66, No. 9, pp. 1205–1212, September, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maksymenko, S.I., Feshchenko, B.G. Homotopic Properties of the Spaces of Smooth Functions on a 2-Torus. Ukr Math J 66, 1346–1353 (2015). https://doi.org/10.1007/s11253-015-1014-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-015-1014-3

Keywords

Navigation