Remarks on Certain Identities with Derivations on Semiprime Rings

  • N. Baydar
  • A. Fošner
  • R. Strašek


Let $n$ be a fixed positive integer, let $R$ be a $(2n)!$ -torsion-free semiprime ring, let $\alpha$ be an automorphism or an anti-automorphism of $R$, and let $D_1 , D_2 : R → R$ be derivations. We prove the following result: If $(D_1^2 (x) + D_2(x))^n  ∘ α(x)^n  = 0 $ holds for all $x Є R$, then $D_1 = D_2 = 0$. The same is true if $R$ is a 2-torsion free semiprime ring and F(x) ° β(x) = 0 for all x ∈ R, where $F(x) = (D_1^2 (x) + D_2(x)) ∘ α(x),\; x ∈ R$, and $β$ is any automorphism or antiautomorphism on $R$.
How to Cite
Baydar, N., A. Fošner, and R. Strašek. “Remarks on Certain Identities With Derivations on Semiprime Rings”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 66, no. 10, Oct. 2014, pp. 1436–1440,
Short communications