Skip to main content
Log in

Exponential Dichotomy and Bounded Solutions of Differential Equations in the Fréchet Space

  • Published:
Ukrainian Mathematical Journal Aims and scope

We establish necessary and sufficient conditions for the existence of bounded solutions of linear differential equations in the Fréchet space. The solutions are constructed with the use of a strong generalized inverse operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. O. Perron, “Die Stabilitatzrage bei Differentialgleichungen,” Math. Z., 32, 138–152 (1930).

    Google Scholar 

  2. A. D. Maizel’, “On the stability of solutions of systems of differential equations,” Tr. Ural. Politekhn. Inst., Ser. Mat., 51, 20–50 (1954).

    MathSciNet  Google Scholar 

  3. W. A. Coppel, “Dichotomies and reducibility. II,” J. Different. Equat., 4, 386–398 (1968).

    Article  MATH  MathSciNet  Google Scholar 

  4. R. J. Sacker and G. R. Sell, “Existence of dichotomies and invariant splittings for linear differential systems. II,” J. Different. Equat., 22, 478–496 (1976).

    Article  MATH  MathSciNet  Google Scholar 

  5. R. J. Sacker, “Existence of dichotomies and invariant splittings for linear differential systems. IV,” J. Different. Equat., 27, 106–137 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  6. R. Sacker, “The splitting index for linear differential systems,” J. Different. Equat., 33, 368–405 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  7. Yu. A. Mitropol’skii, A. M. Samoilenko, and V. L. Kulik, Investigation of the Dichotomy of Linear Systems of Differential Equations with the Help of Lyapunov Functions [in Russian], Naukova Dumka, Kiev (1990).

  8. A. M. Samoilenko, Elements of the Mathematical Theory of Multifrequency Oscillations. Invariant Tori [in Russian], Moscow, Nauka (1987).

  9. A. M. Samoilenko, “On the exponential dichotomy on R of linear differential equations in Rn,Ukr. Mat. Zh., 53, No. 3, 356–371 (2001); English translation: Ukr. Math. J., 53, No. 3, 407–426 (2001).

  10. M. G. Krein, Lectures on the Theory of Stability of Solutions of Differential Equations in a Banach Space [in Russian], Institute of Mathematics, Academy of Sciences of Ukr. SSSR, Kiev (1964).

    Google Scholar 

  11. Yu. M. Daletskii and M. G. Krein, Stability of Solutions of Differential Equations in a Banach Space [in Russian], Nauka, Moscow (1970).

  12. J. L. Massera and J. J. Schaffer, Linear Differential Equations and Function Spaces, Academic Press, New York (1966).

    MATH  Google Scholar 

  13. P. Hartman, Ordinary Differential Equations, Wiley, New York (1964).

    MATH  Google Scholar 

  14. I. D. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems, Acta, Kiev (2002).

    MATH  Google Scholar 

  15. K. J. Palmer, “Exponential dichotomies and transversal homoclinic points,” J. Different. Equat., 55, 225–256 (1984).

    Article  MATH  Google Scholar 

  16. K. J. Palmer, “Exponential dichotomies and Fredholm operators,” Proc. Amer. Math. Soc., 104, 149–156 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  17. A. A. Boichuk, “Solutions of weakly nonlinear differential equations bounded on the whole line,” Nonlin. Oscillations, 2, No. 1, 3–10 (1999).

    MATH  MathSciNet  Google Scholar 

  18. A. A. Boichuk, “Dichotomy, trichotomy, and solutions of nonlinear systems bounded on R,” in: Proceedings of the XXVI Summer School “Applications of Mathematics in Engineering’26” (Sozopol, Bulgaria, June13–20, 2000), Heron Press, Sofia, 26 (2001), pp. 9–15.

  19. A. A. Boichuk and A. M. Samoilenko, Generalized Inverse Operators and Fredholm Boundary-Value Problems, VSP, Utrecht (2004).

    Book  MATH  Google Scholar 

  20. D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer, Berlin (1981).

    MATH  Google Scholar 

  21. H. M. Rodrigues and J. G. Ruas-Filho, “Evolution equations: dichotomies and the Fredholm alternative for bounded solutions,” J. Different. Equat., 119, 263–283 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  22. A. G. Baskakov, “On the invertibility and Fredholm property of parabolic differential operators,” Dokl. Ros. Akad. Nauk, 383, No. 5, 583–585 (2002).

    MathSciNet  Google Scholar 

  23. A. G. Baskakov, “Spectral analysis of differential operators with unbounded operator coefficients, difference relations, and semigroups of difference ratios,” Izv. Ros. Akad. Nauk, Ser. Mat., 73, No. 2, 3–68 (2009).

    Article  MathSciNet  Google Scholar 

  24. Yu. Latushkin and Yu. Tomilov, “Fredholm differential operators with unbounded coefficients,” J. Different. Equat., 208, 388–429 (2005).

  25. A. A. Boichuk and O. O. Pokutnyi, “Bounded solutions of differential equations with unbounded operator in Fréchet space,” in: Abstr. of the International Mathematical Conference of the 75th Birthday of Academician A. M. Samoilenko “Bogolyubov Readings DIF-2013. Differential Equations, Theory of Functions, and Their Applications,” Kyiv (2013), pp. 32–33.

  26. A. A. Boichuk and A. A. Pokutnyi, “Bounded solutions of linear differential equations in a Banach space,” Nelin. Kolyvannya, 9, No. 1, 3–14 (2006); English translation: Nonlin. Oscillations, 9, No. 1, 1–12 (2006).

  27. S. G. Krein, Linear Equations in Banach Spaces [in Russian], Nauka, Moscow (1971).

    Google Scholar 

  28. S. G. Krein, Linear Differential Equations in Banach Spaces [in Russian], Nauka, Moscow (1967).

    Google Scholar 

  29. A. A. Pokutnyi, “Bounded solutions of linear and weakly nonlinear differential equations with unbounded operator in the linear part in Banach spaces,” Differents. Uravn., 48, No. 6, 803–813 (2012).

    MathSciNet  Google Scholar 

  30. S. G. Krein and Yu. B. Savchenko, “On the exponential dichotomy for partial differential equations,” Differents. Uravn., 8, No. 5, 835–844 (1972).

    Google Scholar 

  31. O. O. Pokutnyi, “Generalized bounded solutions of linear evolutionary equations in locally convex spaces,” Zh. Obchysl. Prykl. Mat., 98, No. 2, 35–40 (2009).

    Google Scholar 

  32. B. M. Levitan and V. V. Zhikov, Almost Periodic Functions and Differential Equations [in Russian], Moscow University, Moscow (1978).

    Google Scholar 

  33. O. O. Pokutnyi, “Generalized inverse operators in the Fréchet, Banach, and Hilbert spaces,” Visn. Kyiv. Nats. Univ., Ser. Fiz.-Mat. Nauk., No. 4, 158–161 (2013).

  34. E. Deutch, “Semi-inverses, reflexive semi-inverses, and pseudoinverses of an arbitrary linear transformation,” Linear Algebra Appl., 4, 313–322 (1971).

    Article  Google Scholar 

  35. A. P. Robertson and W. J. Robertson, Topological Vector Spaces, Cambridge Univ. Press, London (1964).

    MATH  Google Scholar 

  36. Ya. V. Radyno, Linear Equations and Bornology [in Russian], Belorusskii Gos. Univ., Minsk (1982).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 66, No. 12, pp. 1587–1597, December, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boichuk, A.A., Pokutnyi, A.A. Exponential Dichotomy and Bounded Solutions of Differential Equations in the Fréchet Space. Ukr Math J 66, 1781–1792 (2015). https://doi.org/10.1007/s11253-015-1051-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-015-1051-y

Keywords

Navigation