Decomposition of a Hermitian matrix into a sum of a fixed number of orthoprojections

Keywords: Orthoprojection, Hermitian matrix, Horn inequlities, Frame.


We prove that any Hermitian matrix, whose trace is integer and all eigenvalues lie in $[1+1/(k-3),k-1-1/(k-3)],$ is a sum of $k$ orthoprojections. For sums of $k$ orthoprojections, it is shown that the ratio of the number of eigenvalues not exceeding 1 to the number of eigenvalues not less than 1, taking into account the multiplicity, is not greater than $k-1$. Examples of Hermitian matrices that satisfy the ratio for eigenvalues and, at the same time, can not be decomposed into a sum of $k$ orthoprojections are also suggested.


Finite frames. Theory and applications. Edited by Peter G. Casazza and Gitta Kutyniok. Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, New York, 2013. xvi+483 pp. ISBN: 978-0-8176-8372-6; 978-0-8176-8373-3

Calderbank, Robert; Casazza, Peter G.; Heinecke, Andreas; Kutyniok, Gitta; Pezeshki, Ali. Sparse fusion frames: existence and construction. Adv. Comput. Math. 35 (2011), no. 1, 1–31.

Casazza, Peter G.; Fickus, Matthew; Mixon, Dustin G.; Wang, Yang; Zhou, Zhengfang. Constructing tight fusion frames. Appl. Comput. Harmon. Anal. 30 (2011), no. 2, 175–187.

Leng, Jinsong; Han, Deguang. Orthogonal projection decomposition of matrices and construction of fusion frames. Adv. Comput. Math. 38 (2013), no. 2, 369–381.

Bjørstad, Petter E.; Mandel, Jan. On the spectra of sums of orthogonal projections with applications to parallel computing. BIT 31 (1991), no. 1, 76–88.

Nishio, Katsuyoshi. The structure of a real linear combination of two projections. Linear Algebra Appl. 66 (1985), 169–176.

Ostrovs'kyj, V. L.;, Jakymenko, D. Ju. Про iснування та побудову ортоскалярних наборiв пiдпросторiв. (Ukrainian) [Pro isnuvannja ta pobudovu ortoskaljarnyh naboriv pidprostoriv]. Зб. праць Iн-ту математики НАН України [Zb. prac' In-tu matematyky NAN Ukrai'ny], 12, no. 1, 154–165 (2015).

Böttcher, A.; Spitkovsky, I. M. A gentle guide to the basics of two projections theory. Linear Algebra Appl. 432 (2010), no. 6, 1412–1459.

Fillmore, Peter A. On sums of projections. J. Functional Analysis 4 1969 146–152.

Kruglyak, Stanislav; Rabanovich, Vyacheslav; Samoĭlenko, Yuriĭ. Decomposition of a scalar matrix into a sum of orthogonal projections. Linear Algebra Appl. 370 (2003), 217–225.

Fulton, William. Eigenvalues, invariant factors, highest weights, and Schubert calculus. Bull. Amer. Math. Soc. (N.S.) 37 (2000), no. 3, 209–249.

Fulton, William. Eigenvalues of majorized Hermitian matrices and Littlewood–Richardson coefficients. Special Issue: Workshop on Geometric and Combinatorial Methods in the Hermitian Sum Spectral Problem (Coimbra, 1999). Linear Algebra Appl. 319 (2000), no. 1-3, 23–36.

Horn, Roger A.; Johnson, Charles R. Matrix analysis. Second edition. Cambridge University Press, Cambridge, 2013. xviii+643 pp. ISBN: 978-0-521-54823-6

Kruglyak, S. A.; Rabanovich, V. I.; Samoĭlenko, Yu. S. On sums of projections. (Russian); translated from Funktsional. Anal. i Prilozhen. 36 (2002), no. 3, 20–35, Funct. Anal. Appl. 36 (2002), no. 3, 182–195

Wang, Jin Hsien. The length problem for a sum of idempotents. Linear Algebra Appl. 215 (1995), 135–159.

Wu, Pei Yuan. Additive combinations of special operators. Functional analysis and operator theory (Warsaw, 1992), 337–361, Banach Center Publ., 30, Polish Acad. Sci. Inst. Math., Warsaw, 1994.

How to Cite
RabanovichV. I. “Decomposition of a Hermitian Matrix into a Sum of a Fixed Number of Orthoprojections”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 72, no. 5, Apr. 2020, pp. 679–693, doi:10.37863/umzh.v72i5.2378.
Research articles