Weighted estimation and reduction of influence of bounded perturbations in descriptor control systems

Abstract

UDC 517.925.51; 681.5.03

For a class of linear descriptor systems, we establish new criteria for existence of control laws that provide the asymptotic stability and a prescribed estimate for the weighted damping level of bounded disturbances. We suggest a method of generalized $H_{\infty}$-optimization of descriptor systems with controlled and observed outputs. The main computational procedures of the suggested algorithm are reduced to solving linear and quadratic matrix inequalities with additional rank constraints. We also give an example of a descriptor control system for an electrical circuit.

References

S. Campbell, A. Ilchmann, V. Mehrmann, T. Reis (Eds.)., Applications of differential-algebraic equations: examples and benchmarks, Differential-Algebraic Equations Forum, Springer Nature Switzerland AG (2019), https://doi.org/10.1007/978-3-642-34928-7_2

A. Ilchmann, T. Reis (Eds.), Surveys in differential-algebraic equations III, Differential-Algebraic Equations Forum, Springer Int. Publ. Switzerland (2015), https://doi.org/10.1007/978-3-319-22428-2_4

Guang-Ren Duan, Analysis and design of descriptor linear systems, Springer, New York etc. (2010), https://doi.org/10.1007/978-1-4419-6397-0

R. Riaza, Differential-algebraic systems. Analytical aspects and circuit applications, World Sci., Singapore (2008), https://doi.org/10.1142/6746

A. A. Belov, A. P. Kurdyukov, Deskriptorny`e sistemy` i zadachi upravleniya, Fizmatlit, Moskva ISBN: 978-5-94052-241-6 (2015).

A. M. Samoilenko, M. I. Shkil`, V. P. Yakovecz`, Linijni sistemi diferenczial`nikh rivnyan` z virodzhennyami, Vishha shk., Kiyiv (2000).

F. R. Gantmakher, Theory of matrices (Russian), Nauka, Moscow, 549 pp. ISBN: 5-02-013722-7 (1988).

S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishman, Linear matrix inequalities in system and control theory, SIAM Stud. Appl. Math., 15 (1994), https://doi.org/10.1137/1.9781611970777

G. E. Dullerud, F. G. Paganini, A course in robust control theory. A convex approach, Springer-Verlag, Berlin (2000), https://doi.org/10.1002/rnc.663

B. T. Polyak, P. S. Shherbakov, Robastnaya ustojchivost` i upravlenie, Nauka, Moskva (2002).

D. V. Balandin, M. M. Kogan, Sintez zakonov upravleniya na osnove linejny`kh matrichny`kh neravenstv, Fizmatlit, Moskva, 281, ISBN 978-5-9221-0780-8 (2007).

D. V. Balandin, M. M. Kogan, Obobshhennoe $H_{infty}$ -optimal`noe upravlenie kak kompromiss mezhdu $H_{infty}$ - optimal`ny`m i $gamma$ -optimal`ny`m upravleniyami, Avtomatika i telemekhanika, № 6, 20 – 38 (2010).

A. G. Mazko, Robastnaya ustojchivost` i stabilizacziya dinamicheskikh sistem. Metody` matrichny`kh i konusny`kh neravenstv, Pr. In-tu matematiki NAN Ukrayini, 102, ISBN 978-966-02-7839-4 (2016).

A. G. Mazko, S. N. Kusij, Stabilizacziya po vy`khodu i vzveshennoe podavlenie vozmushhenij v diskretny`kh sistemakh upravleniya, Problemy` upravleniya i informatiki, № 6, 78 – 93 (2017).

O. G. Mazko, Kusij S. M., Zvazhene gasinnya obmezhenikh zburen` u sistemi keruvannya litaka v rezhimi posadki, Zb. pracz` In-tu matematiki NAN Ukrayini, 15, № 1, 88 – 99 (2018).

O. G. Mazko, T. O. Kotov, Robastna stabilizacziya i zvazhene gasinnya obmezhenikh zburen` u deskriptornikh sistemakh keruvannya, Ukr. mat. zhurn., 71, № 10, 1374 – 1388 (2019).

O. G. Mazko, T. O. Kotov, Oczinka vplivu i gasinnya obmezhenikh zburen` u deskriptornikh sistemakh keruvannya, Zb. pracz` In-tu matematiki NAN Ukrayini, 16, № 2, 63 – 84 (2019).

P. Gahinet, P. Apkarian, A linear matrix inequality approach to $H_{infty}$ control, Intern. J. Robust and Nonlinear Control, 4, 421 – 448 (1994), https://doi.org/10.1002/rnc.4590040403

S. Xu, J. Lam, Y. Zou, New versions of bounded real lemmas for continuous and discrete uncertain systems, Circuits, Systems and Signal Process, 26, № 6, 829 – 838 (2007), https://doi.org/10.1007/s00034-007-9000-0

M. Chadli, P. Shi, Z. Feng, J. Lam, New bounded real lemma formulation and $H_{infty}$ control for continuous-time descriptor systems, Asian J. Control, 20, № 1, 1 – 7 (2018), https://doi.org/10.1002/asjc.1606

F. Gao, W. Q. Liu, V. Sreeram, K. L. Teo, Bounded real lemma for descriptor systems and its application, IFAC 14th Triennial World Congress, Beijing, P. R., China (1999), p. 1631 – 1636.

I. Masubushi, Y. Kamitane, A. Ohara, N. Suda, $H_{infty}$ control for descriptor systems: a matrix inequalities approach, Automatica, 33, № 4, 669 – 673 (1997), https://doi.org/10.1016/S0005-1098(96)00193-8

O. G. Mazko, Oczinka zvazhenogo rivnya gasinnya obmezhenikh zburen` u deskriptornikh sistemakh, Ukr. mat. zhurn., 70 , № 11, 1541 – 1552 (2018).

Yu Feng, Mohamed Yagoubi, Robust control of linear descriptor systems, Springer Nature Singapore Pte Ltd (2017), https://doi.org/10.1007/978-981-10-3677-4

Masaki Inoue, Teruyo Wada, Masao Ikeda, Eiho Uezato, Robust state-space $H_{infty}$ controller design for descriptor systems, Automatica, 59, 164 – 170 (2015), https://doi.org/10.1016/j.automatica.2015.06.021

D. Cobb, Robust Controllability, observability and duality in singular systems, IEEE Trans. Automat. Control, 29, 1076 – 1082 (1984), https://doi.org/10.1109/TAC.1984.1103451

K. Takaba, Robust $scr{H}^2$ control of descriptor system with time-varying uncertainty, Intern. J. Robust and Nonlinear Control, 71, № 4, 559 – 579 (1998), https://doi.org/10.1080/002071798221678

Published
20.11.2020
How to Cite
MazkoA. G. “Weighted Estimation and Reduction of Influence of Bounded Perturbations in Descriptor Control Systems”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 72, no. 11, Nov. 2020, pp. 1510-23, doi:10.37863/umzh.v72i11.2389.
Section
Research articles