Skip to main content
Log in

Robustness of the exponential dichotomies of boundary-value problems for the general first-order hyperbolic systems

  • Published:
Ukrainian Mathematical Journal Aims and scope

We examine the robustness of exponential dichotomies of boundary-value problems for general linear first-order one-dimensional hyperbolic systems. It is assumed that the boundary conditions guarantee an increase in the smoothness of solutions in a finite time interval, including the reflection boundary conditions. We show that the dichotomy survives in the space of continuous functions under small perturbations of all coefficients in the differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. A. Akramov, V. S. Belonosov, T. I. Zelenyak, M. M. Lavrentev (Jr.), M. G. Slinko, and V. S. Sheplev, “Mathematical foundations of modeling of catalytic processes: a review,” Theor. Found. Chem. Eng., 34, No. 3, 295–306 (2000).

    Article  Google Scholar 

  2. L. Barreira and C. Valls, “Smooth robustness of exponential dichotomies,” Proc. Amer. Math. Soc., 139, 999–1012 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  3. W. A. Coppel, “Dichotomies in stability theory,” Lect. Notes Math., 629, (1978).

  4. Yu. Daleckiy and M. Krein, Stability of Solutions of Differential Equations in Banach Space, Amer. Math. Soc., Providence, RI (1974).

  5. D. Henry, “Geometric theory of semilinear parabolic equations,” Lect. Notes Math., 840 (1981).

  6. R. Johnson and G. Sell, “Smoothness of spectral subbundles and reducibility of quasiperiodic linear differential systems,” J. Different. Equat., 41, 262–288 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  7. S.-N. Chow and H. Leiva, “Existence and roughness of the exponential dichotomy for skew-product semiflow in Banach spaces,” J. Different. Equat., 120, 429–477 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  8. I. Kmit, “Classical solvability of nonlinear initial boundary problems for first-order hyperbolic systems,” Int. J. Dynam. Syst. Different. Equat., 1, No. 3, 191–195 (2008).

    Article  MathSciNet  Google Scholar 

  9. I. Kmit, “Smoothing effect and Fredholm property for first-order hyperbolic PDEs,” Oper. Theory: Adv. Appl., 231, 219–238 (2013).

    MathSciNet  Google Scholar 

  10. I. Kmit, “Smoothing solutions to initial boundary problems for first-order hyperbolic systems,” Appl. Anal., 90, No. 11, 1609–1634 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  11. I. Kmit and G. Hörmann, “Semilinear hyperbolic systems with nonlocal boundary conditions: reflection of singularities and delta waves,” J. Anal. Appl., 20, No. 3, 637–659 (2001).

    MATH  Google Scholar 

  12. M. Lichtner, M. Radziunas, and L. Recke, “Well-posedness, smooth dependence, and center manifold reduction for a semilinear hyperbolic system from laser dynamics,” Math. Meth. Appl. Sci., 30, 931–960 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  13. R. Naulin and M. Pinto, “Admissible perturbations of exponential dichotomy roughness,” Nonlin. Anal., 31, 559–571 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  14. K. J. Palmer, “A perturbation theorem for exponential dichotomies,” Proc. Roy. Soc. Edinburgh A, 106, 25–37 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  15. V. A. Pliss and G. R. Sell, “Robustness of exponential dichotomies in infinite-dimensional dynamical systems,” J. Dynam. Different. Equat., 11, 471–513 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  16. R. K. Romanovskii and L. V. Bel’gart, “On the exponential dichotomy of solutions of the Cauchy problem for a hyperbolic system on a plane,” Differents. Uravn., 46, No. 8, 1125–1134 (2010).

    MathSciNet  Google Scholar 

  17. R. Sacker and G. Sell, “Dichotomies for linear evolutionary equations in Banach spaces,” J. Different. Equat., 113, 17–67 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  18. A. M. Samoilenko, Elements of the Mathematical Theory of Multi-Frequency Oscillations, Kluwer, Dordrecht (1991), 327 p.

  19. V. I. Tkachenko, “On the exponential dichotomy of impulsive evolution systems,” Ukr. Math. J., 46, No. 4, 441–448 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  20. Y. Yi, “A generalized integral manifold theorem,” J. Different. Equat., 102, 153–187 (1993).

    Article  MATH  Google Scholar 

  21. T. I. Zelenyak, “On stationary solutions of mixed problems relating to the study of certain chemical processes,” Different. Equat., 2, 98–102 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 65, No. 2, pp. 236–251, February, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kmit, I.Y., Recke, L. & Tkachenko, V.I. Robustness of the exponential dichotomies of boundary-value problems for the general first-order hyperbolic systems. Ukr Math J 65, 260–276 (2013). https://doi.org/10.1007/s11253-013-0776-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-013-0776-8

Keywords

Navigation