Skip to main content

Advertisement

Log in

On the Lebesgue Inequality on Classes of \( \bar{\psi} \) -Differentiable Functions

  • Brief Communications
  • Published:
Ukrainian Mathematical Journal Aims and scope

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We consider the deviations of Fourier sums in the spaces \( {C^{\bar{\psi}}} \). The estimates of these deviations are expressed via the best approximations of the \( \bar{\psi} \) -derivatives of functions in the Stepanets sense. The sequences \( \bar{\psi} \) = (ψ1, ψ2) are quasiconvex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. H. Lebesģue, “Sur la représentation trigonometrique approcheé des fonctions satisfaisant a une condition de Lipschitz,” Bull. Soc. Math. France, 38, 184–210 (1910).

    MathSciNet  MATH  Google Scholar 

  2. V. K. Dzyadyk, Introduction to the Theory of Uniform Approximation of Functions by Polynomials [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  3. K. I. Oskolkov, “On the Lebesgue inequality in a uniform metric and on a set of complete measure,” Mat. Zametki, 18, No. 4, 515–526 (1975).

    MathSciNet  MATH  Google Scholar 

  4. A. I. Stepanets, Approximation of \( \bar{\psi} \) -Integrals of Periodic Functions by Fourier Sums [in Russian], Preprint No. 96.11, Institute of Mathematics, Ukrainian National Academy of Sciences, Kiev (1996).

  5. A. I. Stepanets, “Rate of convergence of Fourier series on the classes of \( \bar{\psi} \) -integrals,” Ukr. Mat. Zh., 49, No. 8, 1069–1113 (1997); English translation: Ukr. Math. J., 49, No. 8, 1201–1251 (1997).

  6. A. I. Stepanets, Methods of Approximation Theory [in Russian], Vol. 1, Institute of Mathematics, Ukrainian National Academy of Sciences, Kiev (2002).

  7. A. I. Stepanets, “Approximation of \( \bar{\psi} \) -integrals of periodic functions by Fourier sums (low smoothness). I,” Ukr. Mat. Zh., 50, No 2, 274–291 (1998); English translation: Ukr. Math. J., 50, No 2, 314–333 (1998).

  8. A. I. Stepanets, “Approximation of \( \bar{\psi} \) -integrals of periodic functions by Fourier sums (low smoothness). II,” Ukr. Mat. Zh., 50, No. 3, 388–400 (1998); English translation: Ukr. Math. J., 50, No. 3, 442–454 (1998).

  9. A. Kolmogoroff, “Sur l’ ordre de grandeur des coefficients de la serie de Fourier-Lebesģue,” Bull. Acad. Pol., Sér. Sci. Math., 83–86 (1923).

  10. S. A. Telyakovskii, “Some estimates for trigonometric series with quasiconvex coefficients,” Mat. Sb., 63(105), No. 3, 426–444 (1964).

    MathSciNet  Google Scholar 

  11. S. A. Telyakovskii, “Estimate for the norm of a function via its Fourier coefficients convenient in the problems of approximation theory” Tr. Mat. Inst. Akad. Nauk SSSR, 109, 65–97 (1971).

    Google Scholar 

  12. R. M. Trigub, “Approximation of continuous periodic functions with bounded derivative by polynomials,” in: Theory of Mappings and Approximation of Functions [in Russian], Naukova Dumka, Kiev (1989), pp. 185–195.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 65, No. 6, pp. 844–849, June, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaderei, N.M., Zaderei, P.V. On the Lebesgue Inequality on Classes of \( \bar{\psi} \) -Differentiable Functions. Ukr Math J 65, 938–944 (2013). https://doi.org/10.1007/s11253-013-0830-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-013-0830-6

Keywords

Navigation