Skip to main content
Log in

Two-Phase Solitonlike Solutions of the Cauchy Problem for a Singularly Perturbed Korteweg-De-Vries Equation with Variable Coefficients

  • Published:
Ukrainian Mathematical Journal Aims and scope

We describe a set of initial conditions for which the Cauchy problem for a singularly perturbed Korteweg–de-Vries equation with variable coefficients has an asymptotic two-phase solitonlike solution. The notion of the manifold of initial data of the Cauchy problem for which this solution exists is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. N. N. Bogolyubov and Yu. A. Mitropol’skii, Asymptotic Methods in the Theory of Nonlinear Oscillations [in Russian], Nauka, Moscow (1963).

    Google Scholar 

  2. N. N. Bogolyubov, Yu. A. Mitropol’skii, and A. M. Samoilenko, Method of Accelerated Convergence in Nonlinear Mechanics [in Russian], Naukova Dumka, Kiev (1969).

    Google Scholar 

  3. A. M. Samoilenko, Elements of the Mathematical Theory of Multifrequency Oscillations. Invariant Tori [in Russian], Moscow, Nauka (1987).

    Google Scholar 

  4. V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, Theory of Solitons. Inverse Scattering Transform [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  5. R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris, Solitons and Nonlinear Wave Equations, Academic Press, London (1984).

    Google Scholar 

  6. G. L. Lam, Jr., Elements of Soliton Theory, Wiley, New York (1980).

    Google Scholar 

  7. R. K. Bullough and P. J. Caudrey (editors), Solitons, Springer, Berlin (1980).

    Google Scholar 

  8. D. Blacmore, A. K. Prykarpatsky, and V. Hr. Samoylenko, Nonlinear Dynamical Systems of Mathematical Physics. Spectral and Integrability Analysis, World Scientific, Singapore (2011).

    Google Scholar 

  9. N. J. Zabusky and M. D. Kruskal, “Interaction of solitons in a collisionless plasma and recurrence of initial states,” Phys. Rev. Lett., 15, 240–243 (1965).

    Article  MATH  Google Scholar 

  10. C. S. Gardner, J. M. Green, M. D. Kruskal, and R. M. Miura, “Method for solving the Korteweg–de-Vries equation,” Phys. Rev. Lett., 19, 1095–1097 (1967).

    Article  Google Scholar 

  11. R. M. Miura and M. D. Kruskal, “Application of nonlinear WKB-method to the Korteweg–de-Vries equation,” SIAM Appl. Math., 26, No. 2, 376–395 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  12. V. P. Maslov, Complex WKB Method in Nonlinear Equations [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  13. S. Yu. Dobrokhotov and V. P. Maslov, “Finite-zone almost periodic solutions in the WKB approximations,” in: VINITI, Series on Contemporary Problems of Mathematics [in Russian], Vol. 15, VINITI, Moscow (1980), pp. 3–94.

    Google Scholar 

  14. V. P. Maslov and G. A. Omel’yanov, “Asymptotic solitonlike solutions of equations with small dispersion,” Usp. Mat. Nauk, 36, Issue 3 (219), 63–124 (1981).

    MATH  MathSciNet  Google Scholar 

  15. H. Flaschka, M. G. Forest, and D.W. McLaughlin, “Multiphase averaging and the inverse spectral solution of the Korteweg–de-Vries equation,” Comm. Pure Appl. Math., 33, No. 6, 739–784 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  16. Yu. A. Mitropol’skii, N. N. Bogolyubov, Jr., A. K. Prikarpatskii, and V. G. Samoilenko, Integrable Dynamical Systems. Spectral and Differential-Geometric Aspects [in Russian], Naukova Dumka, Kiev (1987).

    Google Scholar 

  17. P. D. Lax and C. D. Levermore, “The small dispersion limit of the Korteweg–de-Vries equation. I,” Comm. Pure Appl. Math., 36, No. 3, 253–290 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  18. P. D. Lax and C. D. Levermore, “The small dispersion limit of the Korteweg–de-Vries equation. II,” Comm. Pure Appl. Math., 36, No. 5, 571–593 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  19. P. D. Lax and C. D. Levermore, “The small dispersion limit of the Korteweg–de-Vries equation. III,” Comm. Pure Appl. Math., 36, No. 6, 809–829 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  20. S. Venakides, “The Korteweg–de-Vries equation with small dispersion: higher order Lax–Levermore theory,” Comm. Pure Appl. Math., 43, No. 3, 335–361 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  21. D. W. McLaughlin and J. A. Strain, “Computing the weak limit of KdV,” Comm. Pure Appl. Math., 47, No. 10, 1319–1364 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  22. T. Grava and C. Klein, “Numerical solution of the small dispersion limit of Korteweg–de-Vries and Whitham equations,” Comm. Pure Appl. Math., 60, No. 11, 1623–1664 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  23. F. de Kerf, Asymptotic Analysis of a Class of Perturbed Korteweg–de-Vries Initial-Value Problems, Centrum voor Wiskunde en Informatica, Amsterdam (1988).

    Google Scholar 

  24. L. A. Kalyakin, “Perturbation of the Korteweg–de-Vries soliton,” Teor. Mat. Fiz., 92, No. 1, 62–76 (1992).

    Article  MathSciNet  Google Scholar 

  25. A. M. Il’in and L. A. Kalyakin, “Perturbation of finite-soliton solutions of the Korteweg–de-Vries equation,” Dokl. Akad. Nauk, 336, No. 5, 595–598 (1994).

    MathSciNet  Google Scholar 

  26. S. G. Glebov, O. M. Kiselev, and V. A. Lazarev, “Birth of solitons during passage through local resonance,” Proc. Steklov Inst. Math. Suppl., 1, 84–90 (2003).

    MathSciNet  Google Scholar 

  27. S. G. Glebov, O. M. Kiselev, and V. A. Lazarev, “Slow passage through resonance for a weakly nonlinear dispersive wave,” SIAM J. Appl. Math., 65, No. 6, 2158–2177 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  28. S. G. Glebov and O. M. Kiselev, “The stimulated scattering of solitons on a resonance,” J. Nonlin. Math. Phys., 12, No. 3, 330–341 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  29. V. P. Maslov and G. A. Omel’yanov, Geometric Asymptotics for PDE. I, American Mathematical Society, Providence, RI (2001).

    Google Scholar 

  30. A. Sjoberg, “On the Korteweg–de-Vries equation: existence and uniqueness,” J. Math. Anal. Appl., 29, No. 3, 569–579 (1970).

    Article  MathSciNet  Google Scholar 

  31. E. Ya. Khruslov, “Asymptotics of the solution of the Cauchy problem for the Korteweg–de-Vries equation with stepwise initial data,” Mat. Sb., 99(141), No. 2, 261–281 (1976).

    Google Scholar 

  32. I. Egorova, K. Grunert, and G. Teschl, “On Cauchy problem for the Korteweg–de Vries equation with step-like finite gap initial data I. Schwartz-type perturbations,” Nonlinearity, 22, 1431–1457 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  33. V. B. Baranetskii and V. P. Kotlyarov, “Asymptotic behavior in the region of the trailing edge of the solution to the KdV equation with ‘step-like’ initial condition,” Teor. Mat. Fiz., 126, No. 2, 214–227 (2001).

    Article  MathSciNet  Google Scholar 

  34. T. Kato, “On the Korteweg–de-Vries equation,” Manuscr. Math., 28, 89–99 (1979).

    Article  MATH  Google Scholar 

  35. V. M. Yakupov, “On the Cauchy problem for the Korteweg–de-Vries equation,” Differents. Uravn., 11, No. 3, 556–561 (1976).

    Google Scholar 

  36. V. A. Arkad’ev, A. K. Pogrebkov, and M. K. Polivanov, “Singular solutions of the KdV equation and the method of inverse scattering problem,” Zap. Nauchn. Sem. LOMI, 133, 17–37 (1984).

    MATH  MathSciNet  Google Scholar 

  37. S. I. Pokhozhaev, “On singular solutions of the Korteweg–de-Vries equation,” Mat. Zametki, 88, Issue 5, 770–777 (2010).

    Article  MathSciNet  Google Scholar 

  38. S. I. Pokhozhaev, “On the absence of global solutions of the Korteweg–de Vries equation,” Sovr. Mat. Fundam. Napr., 39, 141–150 (2011).

    Google Scholar 

  39. A.V. Faminskii, “Cauchy problem for the Korteweg–de-Vries equation and its generalizations,” Tr. Sem. im. Petrovskogo, Issue 13, 56–105 (1988).

  40. S. N. Kruzhkov and A.V. Faminskii, “Generalized solutions of the Cauchy problem for the Korteweg–de-Vries equation,” Mat. Sb., 120, No 3, 396–425 (1983).

    MathSciNet  Google Scholar 

  41. A.V. Faminskii and I. Yu. Bashlykova, “Weak solutions to one initial-boundary-value problem with three boundary conditions for quasilinear evolution equations of the third order,” Ukr. Math. Bull., 5, No. 1, 83–98 (2008).

    MathSciNet  Google Scholar 

  42. V. H. Samoilenko and Yu. I. Samoilenko, “Asymptotic two-phase solitonlike solutions of the singularly perturbed Korteweg–de-Vries equation with variable coefficients,” Ukr. Mat. Zh., 60, No. 3, 378–387 (2008); English translation: Ukr. Math. J., 60, No. 3, 449–461 (2008).

    Article  Google Scholar 

  43. Yu. I. Samoilenko, “One-phase solitonlike solutions of the Cauchy problem for the singularly perturbed Korteweg–de-Vries equation with variable coefficients (the case of special initial conditions),” in: Proc. of the Institute of Mathematics, Ukrainian National Academy of Sciences [in Ukrainian], 9, No. 2 (2012), pp. 327–340.

  44. M. A. Shubin, Pseudodifferential Operators and Spectral Theory [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  45. Yu. I. Samoilenko, “Asymptotic solutions of the singularly perturbed Korteweg–de-Vries equation with variable coefficients (general case),” Mat. Visn. NTSh, 7, 227–242 (2010).

    Google Scholar 

  46. Yu. I. Samoilenko, “Existence of the solution of Cauchy problem for the Hopf equation with variable coefficients in the space of rapidly decreasing functions,” in: Proc. of the Institute of Mathematics, Ukrainian National Academy of Sciences [in Ukrainian], 9, No. 1 (2012), pp. 293–300.

  47. Yu. I. Samoilenko, “Existence of the solution of Cauchy problem for a first-order linear partial differential equation with variable coefficients in the space of rapidly decreasing functions,” Bukovyn. Mat. Zh., 1, No 1-2, 118–122 (2013).

    Google Scholar 

  48. Yu. M. Berezanskii, G. F. Us, and Z. G. Sheftel’, Functional Analysis [in Russian], Vyshcha Shkola, Kiev (1990).

    Google Scholar 

  49. Yu. D. Holovatyi, V. M. Kyrylych, and S. P. Lavrenyuk, Differential Equations [in Ukrainian], Franko Lviv National University, Lviv (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 65, No. 11, pp. 1515–1530, November, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samoilenko, V.H., Samoilenko, Y.I. Two-Phase Solitonlike Solutions of the Cauchy Problem for a Singularly Perturbed Korteweg-De-Vries Equation with Variable Coefficients. Ukr Math J 65, 1681–1697 (2014). https://doi.org/10.1007/s11253-014-0889-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-014-0889-8

Keywords

Navigation