Skip to main content
Log in

On the theory of \( \mathcal{P}\mathcal{T} \)-symmetric operators

  • Published:
Ukrainian Mathematical Journal Aims and scope

We develop a general theory of \( \mathcal{P}\mathcal{T} \)-symmetric operators. Special attention is given to \( \mathcal{P}\mathcal{T} \)-symmetric quasiself-adjoint extensions of symmetric operator with deficiency indices <2, 2>: For these extensions, the possibility of their interpretation as self-adjoint operators in Krein spaces is investigated and the description of nonreal eigenvalues is presented. These abstract results are applied to the Schr¨odinger operator with Coulomb potential on the real axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. A. M. Dirac, “Bakerian lecture. The physical interpretation of quantum mechanics,” Proc. Roy. Soc. London A, 180, No. 980, 1–40 (1942).

    Article  MathSciNet  Google Scholar 

  2. C. M. Bender and S. Boettcher, “Real spectra in non-Hermitian Hamiltonians having \(\mathcal{P}\mathcal{T} \)-symmetry,” Phys. Rev. Lett., 80, No. 24, 5243–5246 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  3. P. Dorey, C. Dunning, and R. Tateo, “Spectral equivalence, Bethe ansatz, and reality properties in \( \mathcal{P}\mathcal{T} \)-symmetric quantum mechanics,” J. Phys. A: Math. Gen., 34, No. 28, 5679–5704 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  4. C. M. Bender, “Making sense of non-Hermitian Hamiltonians,” Rep. Progr. Phys., 70, No. 6, 947–1018 (2007).

    Article  MathSciNet  Google Scholar 

  5. N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Spaces [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  6. T. Ya. Azizov and I. S. Iokhvidov, Foundations of the Theory of Linear Operators in Spaces with Indefinite Metric [in Russian], Nauka, Moscow (1986).

    Google Scholar 

  7. E. Caliceti, F. Cannata, and S. Graffi, “\( \mathcal{P}\mathcal{T}\)-symmetric Schrödinger operators: reality of the perturbed eigenvalues,” SIGMA, 6, 9–17 (2010).

    MathSciNet  Google Scholar 

  8. P. Lounesto, Clifford Algebras and Spinors, Cambridge University Press, Cambridge (2001).

    Book  MATH  Google Scholar 

  9. U. Günther and S. Kuzhel, “\( \mathcal{P}\mathcal{T} \)-symmetry, Cartan decompositions, Lie triple systems, and Krein space-related Clifford algebras,” J. Phys. A: Math. Theor., 43, No. 39, 392,002–392,011 (2010).

    Article  Google Scholar 

  10. S. Kuzhel and O. Patsiuk, “On self-adjoint operators in Krein spaces constructed by Clifford algebra \( {\mathcal C} \) l 2;” Opusc. Math., 32, No. 2, 297–316 (2012).

    MathSciNet  MATH  Google Scholar 

  11. S. Kuzhel and C. Trunk, “On a class of J-self-adjoint-operators with empty resolvent set,” J. Math. Anal. Appl., 379, No. 1, 272–289 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Albeverio and S. Kuzhel, On Elements of the Lax–Phillips Scattering Scheme for \( \mathcal{P}\mathcal{T} \)-Symmetric Graphs, ArXiv:1202.1537v1.

  13. V. I. Gorbachuk, M. L. Gorbachuk, and A. N. Kochubei, “Theory of extensions for symmetric operators and boundary-value problems for differential equations,” Ukr. Mat. Zh., 41, No. 10, 1299–1313 (1989); English translation: Ukr. Math. J., 41, No. 10, 1117–1129 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  14. V. I. Gorbachuk and M. L. Gorbachuk, Boundary-Value Problems for Differential-Operator Equations [in Russian], Naukova Dumka, Kiev (1984).

    Google Scholar 

  15. A. N. Kochubei, “On the extensions of J-symmetric operators,” Teor. Funkts. Funkts. Anal. Prilozh., 31, 74–80 (1979).

    MathSciNet  Google Scholar 

  16. V. A. Derkach and M. M. Malamud, “Generalized resolvents and the boundary-value problems for Hermitian operators with gaps,” J. Funct. Anal., 95, No. 1, 1–95 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Zettl, Sturm–Liouville Theory, American Mathematical Society, Providence, RI (2005).

    MATH  Google Scholar 

  18. A. N. Kochubei, “Self-adjoint extensions of the Schrödinger operator with singular potential,” Sib. Mat. Zh., 32, No. 3, 60–69 (1991).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 64, No. 1, pp. 32–49, January, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuzhel’, S.O., Patsyuk, O.M. On the theory of \( \mathcal{P}\mathcal{T} \)-symmetric operators. Ukr Math J 64, 35–55 (2012). https://doi.org/10.1007/s11253-012-0628-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-012-0628-y

Keywords

Navigation