Skip to main content
Log in

Iteration process for multiple rogers–ramanujan identities

  • Published:
Ukrainian Mathematical Journal Aims and scope

Replacing the monomials by an arbitrary sequence in the recursive lemma found by Bressoud (1983), we establish several general transformation formulas from unilateral multiple basic hypergeometric series to bilateral univariate ones, which are then used for the derivation of numerous multiple series identities of Rogers–Ramanujan type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. K. Agarwal, G. E. Andrews, and D. M. Bressoud, “The Bailey lattice,” J. Indian Math. Soc. (N.S.), 51, 57–73 (1987).

    MathSciNet  MATH  Google Scholar 

  2. A. K. Agarwal and D. M. Bressoud, “Lattice paths and multiple basic hypergeometric series,” Pacif. J. Math., 136, 209–228 (1989).

    MathSciNet  MATH  Google Scholar 

  3. G. E. Andrews, “An analytic generalization of the Rogers–Ramanujan identities for odd moduli,” Proc. Nat. Acad. Sci. U.S.A, 71, 4082–4085 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  4. G. E. Andrews, “Problems and prospects for basic hypergeometric functions,” in: R. Askey (editor), Theory and Application of Special Functions, Academic Press, New York (1975), pp. 191–224.

    Google Scholar 

  5. G. E. Andrews, “Multiple series Rogers–Ramanujan type identities,” Pacif. J. Math., 114, 267–283 (1984).

    MATH  Google Scholar 

  6. G. E. Andrews, “q-Series: Their development and application in analysis, number theory, combinatorics, physics, and computer algebra,” CBMS Region. Conf. Ser. Math., No. 66 (1986).

  7. G. E. Andrews and R. Askey, “Enumeration of partitions: The role of Eulerian series and q-orthogonal polynomials,” in: M. Aigner (editor), Higher Combinatorics, Reidel, Dordrecht (1977), pp. 3–26.

    Google Scholar 

  8. G. E. Andrews, R. Askey, and R. Roy, Special Functions, Cambridge University. Press, Cambridge (1999).

    MATH  Google Scholar 

  9. G. E. Andrews and A. Berkovich, “The WP-Bailey tree and its implications,” J. London Math. Soc., 66, No. 3, 529–549 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  10. G. E. Andrews, A. Schilling, and S. O. Warnaar, “An A 2 Bailey lemma and Rogers–Ramanujan-type identities,” J. Amer. Math. Soc., 12, No. 3, 677–702 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  11. W. N. Bailey, Generalized Hypergeometric Series, Cambridge University Press, Cambridge (1935).

    MATH  Google Scholar 

  12. W. N. Bailey, “Series of hypergeometric type which are infinite in both directions,” Quart. J. Math., 7, 105–115 (1936).

    Article  Google Scholar 

  13. W. N. Bailey, “Some identities in combinatory analysis,” Proc. London Math. Soc., 49, 421–435 (1947).

    Article  MathSciNet  MATH  Google Scholar 

  14. W. N. Bailey, “Identities of the Rogers–Ramanujan type,” Proc. London Math. Soc., 50, 1–10 (1948).

    Article  MathSciNet  MATH  Google Scholar 

  15. W. N. Bailey, “On the analogue of Dixon’s theorem for bilateral basic hypergeometric series,” Quart. J. Math., Oxford Ser., 1, 318–320 (1950).

  16. W. N. Bailey, “On the simplification of some identities of the Rogers–Ramanujan type,” Proc. London Math. Soc., 1, 217–221 (1951).

    Article  MathSciNet  MATH  Google Scholar 

  17. D. M. Bressoud, “Analytic and combinatorial generalizations of the Rogers–Ramanujan identities,” Mem. Amer. Math. Soc., 24, No. 227, 54 (1980).

    MathSciNet  Google Scholar 

  18. D. M. Bressoud, “On partitions, orthogonal polynomials and the expansion of certain infinite products,” Proc. London Math. Soc., 42, 478–500 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  19. D. M. Bressoud, “An easy proof of the Rogers–Ramanujan identities,” J. Number Theory, 16, 235–241 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  20. D. M. Bressoud, “Lattice paths and the Rogers–Ramanujan identities,” Number Theory, Madras, 140–172 (1987); Lect. Notes Math., 1395 (1989).

  21. D. M. Bressoud, M. Ismail, and D. Stanton, “Change of base in Bailey pairs,” Ramanujan J., 4, No. 4, 435–453 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  22. D. M. Bressoud and D. Zeilberger, “Generalized Rogers–Ramanujan bijections,” Adv. Math., 78, No. 1, 42–75 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  23. L. Carlitz and M. V. Subbarao, “A simple proof of the quintuple product identity,” Proc. Amer. Math. Soc., 32, No. 1, 42–44 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  24. R. Chapman, “A probabilistic proof of the Andrews–Gordon identities,” Discrete Math., 290, 79–84 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  25. W. Chu, “Almost-poised hypergeometric series,” Mem. Amer. Math. Soc., 135, No. 642, 99+iv (1998).

    Google Scholar 

  26. W. Chu, “The Saalsch¨utz chain reactions and bilateral basic hypergeometric series,” Constr. Approxim., 18, No. 4, 579–597 (2002).

    Article  MATH  Google Scholar 

  27. W. Chu, “The Saalsch¨utz chain reactions and multiple q-series transformations,” in: M. E. H. Ismail and E. Koelink (editors), Theory and Applications of Special Functions, Springer, (2005), pp. 99–122.

    Google Scholar 

  28. W. Chu, “Bailey’s very well-poised 6ψ6-series identity,” J. Combin. Theory (Ser. A), 113, No. 6, 966–979 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  29. W. Chu, “Abel’s lemma on summation by parts and basic hypergeometric series,” Adv. Appl. Math., 39, No. 4, 490–514 (2007).

    Article  MATH  Google Scholar 

  30. W. Chu, “Jacobi’s triple product identity and the quintuple product identity,” Boll. Unione Mat. Ital., B10, No. 8, 867–874 (2007).

    Google Scholar 

  31. W. Chu and Q. L. Yan, “Unification of the quintuple and septuple product identities,” Electron. J. Combinatorics, 14, No. 7 (2007).

    Google Scholar 

  32. W. Chu and W. Zhang, “Bilateral Bailey lemma and Rogers–Ramanujan identities,” Adv. Appl. Math., 42, 358–391 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  33. S. Cooper, “The quintuple product identity,” Int. J. Number Theory, 2, No. 1, 115–161 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  34. J. Fulman, “A probabilistic proof of the Rogers–Ramanujan identities,” Bull. London Math. Soc., 33, No. 4, 397–407 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  35. F. G. Garvan, “Generalizations of Dyson’s rank and non-Rogers–Ramanujan partitions,” Manuscr. Math., 84, No. 3-4, 343–359 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  36. G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge (2004).

    Book  MATH  Google Scholar 

  37. B. Gordon, “A combinatorial generalization of the Rogers–Ramanujan identities,” Amer. J. Math., 83, 393–399 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  38. F. H. Jackson, “Examples of a generalization of Euler’s transformation for power series,” Messenger Math., 57, 169–187 (1928).

    Google Scholar 

  39. C. G. J. Jacobi, Fundamenta Nova Theoriae Functionum Ellipticarum, Fratrum Borntr¨ager Regiomonti (1829); Gesammelte werke, G. Reimer, Berlin (1881), Bd 1.

  40. J. Lovejoy, “Overpartition theorems of the Rogers–Ramanujan type,” J. London Math. Soc. (2), 69, No. 3, 562–574 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  41. J. McLaughlin and A.V. Sills, “Ramanujan–Slater type identities related to the moduli 18 and 24;” J. Math. Anal. Appl., 344, 765–777 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  42. J. McLaughlin and A.V. Sills, “Combinatorics of Ramanujan–Slater type identities,” Integers 9 Supplement, Art#10 (2009).

  43. P. Paule, On identities of the Rogers–Ramanujan type,” J. Math. Anal. Appl., 107, No. 1, 255–284 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  44. A.V. Sills, “On identities of the Rogers–Ramanujan type,” Ramanujan J., 11, No. 3, 403–429 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  45. L. J. Rogers, “Second memoir on the expansion of certain infinite products,” Proc. London Math. Soc., 25, 318–343 (1894).

    Article  Google Scholar 

  46. L. J. Rogers, “On two theorems of combinatory analysis and some allied identities,” Proc. London Math. Soc., 16, 315–336 (1917).

    MATH  Google Scholar 

  47. A. Selberg, “Über einige arithmetische identita¨ten,” Avh. Norske. Vidensk. Akad. Oslo l. Mat. Naturvidensk., Kl, 8, 2–23 (1936).

    Google Scholar 

  48. A. Schilling and S. O. Warnaar, “A higher level Bailey lemma: proof and application,” Ramanujan J., 2, 327–349 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  49. A.V. Sills, “A partition bijection related to the Rogers–Selberg identities and Gordon’s theorem,” J. Combin. Theory (Ser. A), 115, 67–83 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  50. U. B. Singh, “Certain bibasic hypergeometric transformation formulae and their application to Rogers–Ramanujan identities,” J. Math. Anal. Appl., 198, No. 3, 671–684 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  51. L. J. Slater, “A new proof of Rogers’s transformations of infinite series,” Proc. London Math. Soc. (2), 53, 460–475 (1951).

    Article  MathSciNet  MATH  Google Scholar 

  52. L. J. Slater, “Further identities of the Rogers–Ramanujan type,” Proc. London Math. Soc. (2), 54, 147–167 (1952).

    Article  MathSciNet  MATH  Google Scholar 

  53. L. J. Slater, Generalized Hypergeometric Functions, Cambridge University Press, Cambridge (1966).

    MATH  Google Scholar 

  54. D. Stanton, “The Bailey–Rogers–Ramanujan group,” in: q-Series with Applications to Combinatorics, Number Theory, and Physics (Urbana, IL, 2000), 55–70; Contemp. Math., 291, American Mathematical Society, Providence, RI (2001).

    Google Scholar 

  55. J. R. Stembridge, “Hall–Littlewood functions, plane partitions, and the Rogers–Ramanujan identities,” Trans. Amer. Math. Soc., 319, 469–498 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  56. S. O. Warnaar, “Supernomial coefficients, Bailey’s lemma and Rogers–Ramanujan type identities. A survey of results and open problems,” The Andrews Festschrift (Maratea, 1998); Séminaire Lotharingien de Combinatoire, 42, Art. B42n, 22 (1999).

  57. S. O. Warnaar, “The generalized Borwein conjecture: I. The Burge transform,” in: q-Series with Applications to Combinatorics, Number Theory, and Physics (Urbana, IL, 2000), 243–267; Contemp. Math., 291, American Mathematical Society, Providence, RI (2001).

    Google Scholar 

  58. S. O. Warnaar, “The generalized Borwein conjecture: II. Refined q-trinomial coefficients,” Discrete Math., 272, No. 2-3, 215–258 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  59. G. N. Watson, “A new proof of the Rogers–Ramanujan identities,” J. London Math. Soc., 4, 4–9 (1929).

    Article  MATH  Google Scholar 

  60. G. N. Watson, “Theorems stated by Ramanujan: VII. Theorems on continued fractions,” J. London Math. Soc., 4, 39–48 (1929).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 64, No. 1, pp. 100–125, January, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, W., Wang, C. Iteration process for multiple rogers–ramanujan identities. Ukr Math J 64, 110–139 (2012). https://doi.org/10.1007/s11253-012-0633-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-012-0633-1

Keywords

Navigation