A result on generalized derivations on right ideals of prime rings

  • N. Argaç Ege Univ., Izmir, Turkey
  • Ç. Demir Ege Univ., Izmir, Turkey


Let $R$ be a prime ring of characteristic not 2 and let $I$ be a nonzero right ideal of $R$. Let $U$ be the right Utumi quotient ring of $R$ and let $C$ be the center of $U$. If $G$ is a generalized derivation of $R$ such that $[[G(x), x], G(x)] = 0$ for all $x \in I$, then $R$ is commutative or there exist $a, b \in U$ such that $G(x) = ax + xb$ for all $x \in R$ and one of the following assertions is true: $$(1)\quad (a - \lambda)I = (0) = (b + \lambda)I \;\;\text{for some}\; \lambda \in C,$$ $$(2)\quad (a - \lambda)I = (0) \;\;\text{for some}\; \lambda \in C \;\;\text{and}\; b \in C.$$
How to Cite
ArgaçN., and Demir Ç. “A Result on Generalized Derivations on Right Ideals of Prime Rings”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 64, no. 2, Feb. 2012, pp. 165-7, http://umj.imath.kiev.ua/index.php/umj/article/view/2563.
Research articles