Skip to main content
Log in

Lipschitz invariant tori of indefinite-monotone systems

  • Published:
Ukrainian Mathematical Journal Aims and scope

We consider a nonlinear system in the direct product of a torus and a Euclidean space. For this system, under the conditions of indefinite coercivity and indefinite monotonicity, we establish the existence of a Lipschitz invariant section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. M. Samoilenko, “On preservation of an invariant torus under perturbation,” Izv. Akad. Nauk SSSR, Ser. Mat., 34, No. 6, 1219–1240 (1970).

    MathSciNet  Google Scholar 

  2. A. M. Samoilenko, Elements of the Mathematical Theory of Multifrequency Oscillations, Kluwer, Dordrecht (1991).

    Book  Google Scholar 

  3. A. M. Samoilenko, “Perturbation theory of smooth invariant tori of dynamical systems,” Nonlin. Analysis, 30, No. 5, 3121–3133 (1997).

    Article  MATH  Google Scholar 

  4. R. J. Sacker, “A perturbation theorem for invariant manifolds and Hölder continuity,” J. Math. Mech., 18, No. 8, 705–761 (1969).

    MathSciNet  MATH  Google Scholar 

  5. N. Fenishel, “Persistence and smoothness of invariant manifolds and flows,” Indiana Univ. Math., 21, No. 3, 193–226 (1971).

    Article  MathSciNet  Google Scholar 

  6. A. Osipenko, Perturbation of Invariant Manifolds of Ordinary Differential Equations, World Scientific, Singapore (1996).

    Google Scholar 

  7. M. O. Perestyuk and S. I. Baloha, “Existence of an invariant torus for one class of systems of differential equations,” Nelin. Kolyvannya, 11, No. 4, 520–529 (2008); English translation: Nonlin. Oscillations, 11, No. 4, 548–558 (2008).

    Google Scholar 

  8. M. O. Perestyuk and P. V. Feketa, “On the existence of an invariant torus for one class of systems of differential equations,” Nauk. Visn. Uzhhorod. Univ., Ser. Mat. Inform., Issue 18, 106–112 (2009).

    Google Scholar 

  9. M. O. Perestyuk and V. Yu. Slyusarchuk, “Green–Samoilenko operator in the theory of invariant sets of nonlinear differential equations,” Ukr. Mat. Zh., 60, No. 7, 948–957 (2008); English translation: Ukr. Math. J., 60, No. 7, 1123–1136 (2008).

    MathSciNet  Google Scholar 

  10. V. L. Golets, “Perturbation of a stable invariant torus of a dynamical system,” Ukr. Mat. Zh., 23, No. 1, 130–137 (1971); English translation: Ukr. Math. J., 23, No. 1, 117–123 (1971).

    Google Scholar 

  11. D. Yu. Volkov and Ya. A. Il’in, “On the existence of an invariant torus of an essentially nonlinear system of differential equations,” Vestn. St. Peterburg. Gos. Univ., Ser. 1, Issue 4, No. 22, 27–31 (1992).

    Google Scholar 

  12. Yu. A. Mitropol’skii, A. M. Samoilenko, and V. L. Kulik, Investigation of Dichotomy of Linear Systems of Differential Equations Using the Lyapunov Function [in Russian], Naukova Dumka, Kiev (1990).

  13. V. M. Cheresiz, “V-monotone systems and almost periodic solutions,” Sib. Mat. Zh., 13, No. 4, 921–932 (1972).

    Google Scholar 

  14. V. M. Cheresiz, “Stable and conditionally stable almost periodic solutions of V-monotone systems,” Sib. Mat. Zh., 15, No. 1, 162–176 (1974).

    Article  Google Scholar 

  15. Yu. V. Trubnikov and A. I. Perov, Differential Equations with Monotone Nonlinearities [in Russian], Nauka i Tekhnika, Minsk (1986).

    Google Scholar 

  16. I. O. Parasyuk and I. A. Romanchenko, “Substantiation of the Galerkin method for indefinite-monotone quasiperiodic systems,” Visn. Kyiv. Univ., Ser. Mat. Mekh., Issue 7, 37–41 (2002).

  17. O. A. Ivanov, “Wa˙zewski’s topological principle and existence of bounded solutions of quasihomogeneous systems,” Vestn. Leningr. Univ., Mat. Mekh. Astron., No. 1, 109–110 (1985).

  18. V. Lagoda and I. Parasyuk, Existence of V-Bounded Solutions for Nonautonomous Nonlinear Systems Via the Ważewski Topological Principle, arXiv:0911.4643v2 [math.CA] (2009).

  19. J. Dugundji, Topology, Allyn and Bacon, Boston (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 64, No. 3, pp. 363–383, March, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samoilenko, A.M., Parasyuk, I.O. & Lahoda, V.A. Lipschitz invariant tori of indefinite-monotone systems. Ukr Math J 64, 408–432 (2012). https://doi.org/10.1007/s11253-012-0655-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-012-0655-8

Keywords

Navigation