Skip to main content
Log in

On inequalities for the norms of intermediate derivatives of multiply monotone functions defined on a finite segment

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

We study the following modification of the Landau–Kolmogorov problem: Let k; r ∈ ℕ, 1 ≤ kr − 1, and p, q, s ∈ [1,∞]. Also let MM m, m ∈ ℕ; be the class of nonnegative functions defined on the segment [0, 1] whose derivatives of orders 1, 2,…,m are nonnegative almost everywhere on [0, 1]. For every δ > 0, find the exact value of the quantity

$$ \omega_{p,q,s}^{k,r}\left( {\delta; M{M^m}} \right): = \sup \left\{ {{{\left\| {{x^{(k)}}} \right\|}_q}:x \in M{M^m},{{\left\| x \right\|}_p} \leqslant \delta, {{\left\| {{x^{(k)}}} \right\|}_s} \leqslant 1} \right\}. $$

We determine the quantity \( \omega_{p,q,s}^{k,r}\left( {\delta; M{M^m}} \right) \) in the case where s = ∞ and m ∈ {r, r − 1, r − 2}. In addition, we consider certain generalizations of the above-stated modification of the Landau–Kolmogorov problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. F. Babenko and Yu. V. Babenko, “Kolmogorov inequalities for multiply monotone functions defined on a half-line,” East J. Approxim., 11, No. 2, 169–186 (2005).

    MathSciNet  MATH  Google Scholar 

  2. V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, “Additive inequalities for intermediate derivatives of differentiable mappings of Banach spaces,” Math. Notes, 63, No. 3, 332–342 (1998).

    Article  MathSciNet  Google Scholar 

  3. V. F. Babenko, N. P. Korneichuk, V. A. Kofanov, and S. A. Pichugov, Inequalities for Derivatives and Their Applications [in Russian], Naukova Dumka, Kiev (2003).

    Google Scholar 

  4. V. F. Babenko and T. M. Rassias, “On exact inequalities of Hardy–Littlewood–Pólya type,” J. Math. Anal. Appl., 245, 570–593 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  5. Yu. V. Babenko, “Pointwise inequalities of Landau–Kolmogorov type for functions defined on a finite segment,” Ukr. Math. J., 53, No. 2, 270–275 (2001).

    Article  MathSciNet  Google Scholar 

  6. B. Bojanov and N. Naidenov, “An extension of the Landau–Kolmogorov inequality. Solution of a problem of Erdös,” J. D’Anal. Math., 78, 263–280 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  7. B. Bojanov and N. Naidenov, “Examples of Landau–Kolmogorov inequality in integral norms on a finite interval,” J. Approxim. Theory, 117, 55–73 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Borwein and T. Erdélyi, Polynomials and Polynomial Inequalities, Springer, Berlin (1995).

    Book  MATH  Google Scholar 

  9. V. I. Burenkov, “Exact constants in inequalities for norms of intermediate derivatives on a finite interval. I,” Tr. Mat. Inst. Steklov., 156, 22–29 (1980).

    MathSciNet  MATH  Google Scholar 

  10. V. I. Burenkov, “Exact constants in inequalities for norms of intermediate derivatives on a finite interval. II,” Tr. Mat. Inst. Steklov., 173, 38–49 (1986).

    MathSciNet  MATH  Google Scholar 

  11. V. I. Burenkov and V. A. Gusakov, “On sharp constants in inequalities for the modulus of a derivative,” Tr. Mat. Inst. Steklov., 243, 98–119 (2003).

    MathSciNet  Google Scholar 

  12. C. K. Chui and P. W. Smith, “A note on Landau’s problem for bounded intervals,” Amer. Math. Monthly, 82, 927–929 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  13. B. O. Eriksson, “Some best constants in the Landau inequality on a finite interval,” J. Approxim. Theory, 94, 420–452 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  14. A. M. Fink, “Kolmogorov–Landau inequalities for monotone functions,” J. Math. Appl., 90, 251–258 (1982).

    MathSciNet  MATH  Google Scholar 

  15. H. Kallioniemi, “The Landau problem on compact intervals and optimal numerical differentiation,” J. Approxim. Theory, 63, 72–91 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  16. N. P. Korneichuk, V. F. Babenko, and A. A. Ligun, Extremal Properties of Polynomials and Splines [in Russian], Naukova Dumka, Kiev (1992).

    Google Scholar 

  17. M. A. Krasnosel’skii and Ya. B. Rutitskii, Convex Functions and Orlicz Spaces [in Russian], Fizmatgiz, Moscow (1958).

    Google Scholar 

  18. A. Kroó and J. Szabados, “On the exact Markov inequality for k-monotone polynomials in uniform and L1-norm,” Acta Math. Hung., 125, No. 1-2, 99–112 (2009).

    Article  MATH  Google Scholar 

  19. E. Landau, “Einige Ungleichungen fRur zweimal differenzierbane Funktion,” Proc. London Math. Soc., 13, 43–49 (1913).

    Article  MATH  Google Scholar 

  20. G. V. Milovanović, D. S. Mitrinović, and T. M. Rassias, Topics in Polynomials: Extremal Problems, Inequalities, Zeros, World Scientific, Singapore (1994).

    MATH  Google Scholar 

  21. N. Naidenov, “Landau-type extremal problem for the triple \( {\left\| f \right\|_\infty },\;{\left\| {f'} \right\|_p},\;{\left\| {f''} \right\|_\infty } \) on a finite interval,” J. Approxim. Theory, 123, 147–161 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  22. V. M. Olovyanishnikov, “On the question of the best inequalities between upper bounds of consecutive derivatives on a half-line,” Usp. Mat. Nauk, 6, 167–170 (1951).

    Google Scholar 

  23. M. K. Kwong, A. Zettl, Norm Inequalities for Derivatives and Differences, Springer, Berlin (1992).

    MATH  Google Scholar 

  24. M. Sato, “The Landau inequality for bounded intervals with \( \left\| {{f^{(3)}}} \right\| \) finite,” J. Approxim. Theory, 34, 159–166 (1982).

    Article  MATH  Google Scholar 

  25. A. Yu. Shadrin, “To the Landau–Kolmogorov problem on a finite interval,” in: Open Problems in Approximation Theory, SCT, Singapore (1994), pp. 192–204.

    Google Scholar 

  26. D. S. Skorokhodov, “On the Landau–Kolmogorov problem on an interval for absolutely monotone functions,” Vestn. Dnepropetr. Univ., Ser. Mat., 14, 120–128 (2009).

    Google Scholar 

  27. S. B. Stechkin, “Inequalities between norms of intermediate function derivatives,” Acta Sci. Math., 26, 225–230 (1965).

    MATH  Google Scholar 

  28. S. B. Stechkin, “Best approximation of linear operators,” Math. Notes, 1, 91–99 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  29. Yu. N. Subbotin and N. I. Chernih, “Inequalities for derivatives of monotone functions,” in: Approximation of Functions. Theoretical and Applied Aspects (2003), pp. 199–211.

  30. A. I. Zvyagintsev, “Strict inequalities for the derivatives of functions satisfying certain boundary conditions,” Math. Notes, 62, No. 5, 712–724 (1997).

    Article  MathSciNet  Google Scholar 

  31. A. I. Zviagintsev and A. J. Lepin, “On the Kolmogorov inequalities between the upper bounds of function derivatives for n = 3,” Latv. Mat. Ezhegodnik, 26, 176–181 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 64, No. 4, pp. 508–524, April, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skorokhodov, D.S. On inequalities for the norms of intermediate derivatives of multiply monotone functions defined on a finite segment. Ukr Math J 64, 575–593 (2012). https://doi.org/10.1007/s11253-012-0665-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-012-0665-6

Keywords

Navigation