Skip to main content
Log in

Space–time fractional Cauchy problem in spaces of generalized functions

  • Published:
Ukrainian Mathematical Journal Aims and scope

We prove the theorem on existence and uniqueness of solution to the Cauchy problem

$$ \begin{array}{*{20}{c}} {u_t^{{\left( \beta \right)}}+{a^2}{{{\left( {-\varDelta } \right)}}^{{\alpha /2}}}u=F\left( {x,t} \right),\quad \left( {x,t} \right)\in {{\mathbb{R}}^n}\times (0,T],\quad a=\mathrm{const}\hbox{,}} \\ {u\left( {x,0} \right)={u_0}(x),\quad x\in {R^n},} \\ \end{array} $$

where \( u_t^{{(\beta )}} \) is the Riemann–Liouville fractional derivative of order β ∈ (0, 1) and u 0 and F belong to spaces of generalized functions. A representation of this solution is obtained by using the vector Green function. We also establish the character of singularities of the solution for t = 0 depending on the order of singularity of a given generalized function in the initial condition and the character of power singularities of the function on the right-hand side of the equation. In this case, the fractional n-dimensional Laplace operator is defined by using the Fourier transformation \( \mathfrak{F}\left[ {{{{\left( {-\varDelta } \right)}}^{{{\alpha \left/ {2} \right.}}}}\psi (x)} \right]={{\left| \lambda \right|}^{\alpha }}\mathfrak{F}\left[ {\psi (x)} \right] \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. M. Kochubei, “Diffusion of fractional order,” Differents. Uravn., 26, No. 4, 660–670 (1990).

    MathSciNet  Google Scholar 

  2. S. D. Eidelman, S. D. Ivasyshen, and A. N. Kochubei, Analytic Methods in the Theory of Differential and Pseudo-Differential Equations of Parabolic Type, Birkhäuser, Basel (2004).

    Book  MATH  Google Scholar 

  3. M. Caputo, “Linear model of dissipation whose Q is almost frequency independent, II,” Geophys. J. Roy. Astron. Soc., 13, 529–539 (1967).

    Article  Google Scholar 

  4. M. Caputo and P. Minardi, “Linear model of dissipation in inelastic solids,” Rev. Nuovo Cimento (Ser. II), 1, 161–198 (1971).

    Article  Google Scholar 

  5. M. M. Dzhrbashyan, Integral Transformations and Representations of Functions in a Complex Domain [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  6. R. Gorenfio and P. Minardi, “Fractional calculus: integral and differential equations of fractional order,” A. Carpinteri and P. Minardi (editors), Fractals and Fractional Calculus in Continuum Mechanics, Springer, Berlin (1997), pp. 223–276.

  7. A. A.Voroshilov and A. A. Kilbas, “Conditions for the existence of a classic solution of the Cauchy problem for the diffusion-wave equation with Caputo partial derivative,” Dokl. Akad. Nauk, 414, No. 4, 1–4 (2007).

    Google Scholar 

  8. H. Engler, “Similarity solutions for a class of hyperbolic integrodifferential equations,” Different. Integral Equat., 10, No. 5, 815–840 (1997).

    MathSciNet  MATH  Google Scholar 

  9. V. V. Gorodetskii and Ya. M. Drin’, Parabolic Pseudodifferential Equations in the Space of Generalized Functions [in Russian], Preprint No. 4–91, Institute for Applied Problems of Mechanics and Mathematics, Ukrainian Academy of Sciences, Lviv (1991).

  10. H. P. Lopushans’ka, “Basic boundary-value problems for one equation with fractional derivatives,” Ukr. Mat. Zh., 51, No. 1, 48–59 (1999); English translation: Ukr. Math. J., 51, No. 1, 51–65 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  11. A. V. Pskhu, Equations with Partial Derivatives of Fractional Order [in Russian], Nauka, Moscow (2005).

    Google Scholar 

  12. Jun-Sheng Duan, “Time- and space-fractional partial differential equations,” J. Math. Phys., 46, Issue 1, 013504 (2005).

    Article  MathSciNet  Google Scholar 

  13. V. V. Anh and N. N. Leonenko, “Spectral analysis of fractional kinetic equations with random data,” J. Statist. Phys., 104, No. 5/6, 1349–1387 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  14. G. E. Shilov, Mathematical Analysis. Second Special Course [in Russian], Nauka, Moscow (1965).

    Google Scholar 

  15. G. P. Lopushanskaya, A. O. Lopushanskii, and O. V. Pasichnik, “Cauchy problem for equations with time fractional derivative in the space of generalized functions,” Sib. Mat. Zh., 52, No. 6, 1288–1299 (2011).

    Article  MathSciNet  Google Scholar 

  16. A. A. Kilbas and M. Sajgo, H-Transforms, Chapman and Hall/CRC, Boca-Raton (2004).

    Book  MATH  Google Scholar 

  17. V. S. Vladimirov, Equations of Mathematical Physics [in Russian], Nauka, Moscow (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 64, No. 8, pp. 1067–1079, August, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopushans’ka, H.P., Lopushans’kyi, A.O. Space–time fractional Cauchy problem in spaces of generalized functions. Ukr Math J 64, 1215–1230 (2013). https://doi.org/10.1007/s11253-013-0711-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-013-0711-z

Keywords

Navigation