Skip to main content
Log in

Estimates for bilinear approximations of the classes \( S_{{p,\theta}}^{\varOmega }B \) of periodic functions of two variables

  • Published:
Ukrainian Mathematical Journal Aims and scope

We obtain exact-order estimates for the best bilinear approximations of the classes \( S_{{p,\theta}}^{\varOmega }B \) of periodic functions of two variables in the space L q for some relations between the parameters p, q, and θ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. N. Bernstein, Constructive Theory of Functions (1931–1953). Collected Works [in Russian], Vol. 2, Academy of Sciences of the USSR, Moscow (1954).

  2. N. K. Bari and S. B. Stechkin, “Best approximations and differential properties of two conjugate functions,” Tr. Mosk. Mat. Obshch., 5, 483–522 (1956).

    MATH  Google Scholar 

  3. Sun Youngsheng andWang Heping, “Representation and approximation of multivariate periodic functions with bounded mixed moduli of smoothness,” Tr. Mat. Inst. Ros. Akad. Nauk, 219, 356–377 (1997).

    Google Scholar 

  4. N. N. Pustovoitov, “Representation and approximation of periodic functions of many variables with given mixed modulus of continuity,” Anal. Math., 20, 35–48 (1994).

    Article  MathSciNet  Google Scholar 

  5. P. I. Lizorkin and S. M. Nikol’skii, “Spaces of functions of mixed smoothness from the decomposition point of view,” Tr. Mat. Inst. Akad. Nauk SSSR, 187, 143–161 (1989).

    MathSciNet  Google Scholar 

  6. S. M. Nikol’skii, Approximation of Functions of Many Variables and Imbedding Theorems [in Russian], Nauka, Moscow (1969).

    Google Scholar 

  7. S. A. Stasyuk and O. V. Fedunyk, “Approximation characteristics of the classes \( B_{{p,\theta}}^{\varOmega } \) of periodic functions of many variables,” Ukr. Mat. Zh., 58, No. 5, 692–704 (2006); English translation: Ukr. Math. J., 58, No. 5, 779–793 (2006).

    Article  Google Scholar 

  8. V. N. Temlyakov, “Approximation of functions with bounded mixed derivative,” Tr. Mat. Inst. Akad. Nauk SSSR, 178, 1–112 (1986).

    MathSciNet  Google Scholar 

  9. E. Schmidt, “Zur Theorie der linearen und nichtlinearen Integralgleichungen. I,” Math. Ann., 63, 433–476 (1907).

    Article  MathSciNet  MATH  Google Scholar 

  10. C. A. Micchelli and A. Pinkus, “Some problems in the approximation of functions of two variables and n-widths of integral operators,” J. Approxim. Theory, 24, 51–77 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  11. M.-B. A. Babaev, “Approximation of Sobolev classes of functions by sums of products of functions of a smaller number of variables,” Mat. Zametki, 48, No. 6, 10–21 (1990).

    MathSciNet  Google Scholar 

  12. M.-B. A. Babaev, “On the order of approximation of the Sobolev class \( W_q^r \) by bilinear forms,” Mat. Sb., 182, No. 1, 122–129 (1991).

    MATH  Google Scholar 

  13. N. V. Miroshin and V. V. Khromov, “One problem of the best approximation of functions of many variables,” Mat. Zametki, 32, No. 5, 721–727 (1982).

    MathSciNet  Google Scholar 

  14. R. S. Ismagilov, “Widths of sets in linear normed spaces and approximation of functions by trigonometric polynomials,” Usp. Mat. Nauk, 29, No. 3, 161–178 (1974).

    MathSciNet  Google Scholar 

  15. V. N. Temlyakov, Approximation of Periodic Functions, Nova, New York (1993).

    MATH  Google Scholar 

  16. V. N. Temlyakov, “Bilinear approximation and related problems,” Tr. Mat. Inst. Ros. Akad. Nauk, 194, 229–248 (1991).

    Google Scholar 

  17. V. N. Temlyakov, “Approximation of periodic functions of many variables by combinations of functions that depend on a smaller number of variables,” Tr. Mat. Inst. Akad. Nauk SSSR, 173, 243–252 (1986).

    MathSciNet  Google Scholar 

  18. V. N. Temlyakov, “Estimates for the best bilinear approximations of functions of two variables and some their applications,” Mat. Sb., 176, No. 1, 16–33 (1987).

    MathSciNet  Google Scholar 

  19. A. S. Romanyuk, “Bilinear approximations and Kolmogorov widths of Besov periodic classes,” Zb. Pr. Inst. Mat. Nats. Akad. Nauk Ukr., 6, No. 1, 222–236 (2009).

    MathSciNet  MATH  Google Scholar 

  20. A. S. Romanyuk, “Bilinear and trigonometric approximations of the Besov classes \( B_{{p,\theta}}^r \) of periodic functions of many variables,” Izv. Ros. Akad. Nauk, Ser. Mat., 70, No. 2, 69–98 (2006).

    MathSciNet  Google Scholar 

  21. A. S. Romanyuk and V. S. Romanyuk, “Asymptotic estimates for the best trigonometric and bilinear approximations of classes of functions of several variables,” Ukr. Mat. Zh., 62, No. 4, 536–551 (2010); English translation: Ukr. Math. J., 62, No. 4, 612–629 (2010).

    Article  MathSciNet  Google Scholar 

  22. S. M. Nikol’skii, “Inequalities for entire functions of finite degree and their applications in the theory of differentiable functions of many variables,” Tr. Mat. Inst. Akad. Nauk SSSR, 38, 244–278 (1951).

    Google Scholar 

  23. D. Jackson, “Certain problems of closest approximation,” Bull. Amer. Math. Soc., 39, No. 12, 889–906 (1933).

    Article  MathSciNet  Google Scholar 

  24. N. S. Nikol’skii, “Approximation of differentiable functions of many variables by Fourier sums in the metric of L p ,” Dokl. Akad. Nauk SSSR, 208, No. 5, 1283–1285 (1973).

    Google Scholar 

  25. V. N. Temlyakov, “Estimates for the best bilinear approximations of periodic functions,” Tr. Mat. Inst. Akad. Nauk SSSR, 181, 250–267 (1988).

    MathSciNet  MATH  Google Scholar 

  26. B. S. Kashin and A. A. Saakyan, Orthogonal Series [in Russian], Nauka, Moscow (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 64, No. 8, pp. 1106–1120, August, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solich, K.V. Estimates for bilinear approximations of the classes \( S_{{p,\theta}}^{\varOmega }B \) of periodic functions of two variables. Ukr Math J 64, 1260–1276 (2013). https://doi.org/10.1007/s11253-013-0714-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-013-0714-9

Keywords

Navigation