Skip to main content
Log in

FD-method for solving the nonlinear klein–gordon equation

  • Published:
Ukrainian Mathematical Journal Aims and scope

We propose a functional discrete method for solving the Goursat problem for the nonlinear Klein–Gordon equation. Sufficient conditions for the superexponential convergence of this method are established. The obtained theoretical results are illustrated by a numerical example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. K. Alomari, M. S. Noorani, and R. M. Nazar, “Approximate analytical solutions of the Klein–Gordon equation by means of the homotopy analysis method,” J. Qual. Measur. Anal., 4, 45–57 (2008).

    Google Scholar 

  2. A. Barone, F. Esposito, C. Magee, and A. Scott, “Theory and applications of the sine-Gordon equation,” Riv. Nuovo Cim., 1, 227–267 (1971).

    Article  Google Scholar 

  3. B. Batiha, “A variational iteration method for solving the nonlinear Klein–Gordon equation,” Austral. J. Basic Appl. Sci., 3, 3876–3890 (2009).

    Google Scholar 

  4. B. Batiha, M. S. M. Noorani, and I. Hashim, “Numerical solution of sine-Gordon equation by variational iteration method,” Phys. Lett. A, 370, No. 5–6, 437–440 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  5. G. Berikelashvili, O. Jokhadze, S. Kharibegashvili, and B. Midodashvili, “Finite difference solution of a nonlinear Klein–Gordon equation with an external source,” Math. Comput., 80, No. 274, 847–862 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  6. A. V. Bitsadze, Equations of Mathematical Physics, Mir, Moscow (1980).

    MATH  Google Scholar 

  7. J. T. Day, “On the numerical solution of the Goursat problem,” BIT Numer. Math., 11, 450–454 (1971).

    Article  MATH  Google Scholar 

  8. P. G. Drazin and R. S. Johnson, Solitons: an Introduction, Cambridge University Press, Cambridge (1989).

    Book  MATH  Google Scholar 

  9. D. B. Duncan, “Symplectic finite difference approximations of the nonlinear Klein–Gordon equation,” SIAM J. Numer. Anal., 34, No. 5, 1742–1760 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  10. E. Yuluklu, A. Yildimir, and Y. Khan, “A Taylor series based method for solving nonlinear sine-Gordon and Klein–Gordon equations,” World Appl. Sci. J., 10, 20–26 (2010).

    Google Scholar 

  11. J. Frenkel and T. Kontorova, “On the theory of plastic deformation and twinning,” Acad. Sci. U.S.S.R. J. Phys., 1, 137–149 (1939).

    MathSciNet  MATH  Google Scholar 

  12. I. P. Gavrilyuk, I. I. Lazurchak, V. L. Makarov, and D. Sytnyk, “A method with a controllable exponential convergence rate for nonlinear differential operator equations,” Comp. Meth. Appl. Math., 9, No. 1, 63–78 (2009).

    MathSciNet  MATH  Google Scholar 

  13. J. D. Gibbon, P. J. Caudrey, R. K. Bullough, and J. C. Eilbeck, “N-soliton solutions of some non-linear dispersive wave equations of physical significance,” in: Ordinary and Partial Differential Equations (Proc. Conf., Univ. Dundee, Dundee, 1974), Springer, Berlin (1974), pp. 357–362.

    Chapter  Google Scholar 

  14. E. Goursat, A Course in Mathematical Analysis. Vol. III, Part I: Variation of Solutions. Partial Differential Equations of the Second Order, Dover, New York (1964).

    MATH  Google Scholar 

  15. E. Hille, Analytic Function Theory, Ginn, Boston (1959).

    MATH  Google Scholar 

  16. K. Abbaoui, Y. Cherruault, and V. Seng, “Practical formulae for calculus of multivariable Adomian polynomials,” Math. Comput. Model., 22, No. 1, 89–93 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  17. G. Cristensson, Second Order Differential Equations, Springer, New York (2010).

    Book  Google Scholar 

  18. A. A. Kungurtsev, “A hyperbolic equation in a three-dimensional space,” Izv. Vyssh. Uchebn. Zaved., Ser. Mat., 3, 76–80 (2006).

    MathSciNet  Google Scholar 

  19. R. Courant, Partial Differential Equations [Russian translation], Mir, Moscow (1964).

    Google Scholar 

  20. V. L. Makarov and D. V. Dragunov, “A superexponentially convergent functional-discrete method for solving the Cauchy problem for systems of ordinary differential equations,” arXiv:1101.0096v1 (2010).

  21. V. L. Makarov and D. V. Dragunov, “A numerical-analytic method for solving the Cauchy problem for ordinary differential equations,” Comput. Meth. Appl. Math., 11, No. 4, 491–509 (2011).

    MathSciNet  Google Scholar 

  22. V. L. Makarov, “On functional discrete method of arbitrary accuracy order for solving the Sturm–Liouville problem with piecewisesmooth coefficients,” Dokl. Akad. Nauk SSSR, 320, No. 1, 34–39 (1991).

    Google Scholar 

  23. V. L. Makarov and N. O. Rossokhata, “A review of functional discrete technique for eigenvalue problems,” J. Numer. Appl. Math., 97, 97–102 (2009).

    Google Scholar 

  24. A. P. Makhmudov and Le Dyk Kiem, “Approximation of solutions of Goursat’s problem for a nonlinear equation of hyperbolic type by Bernshtein-type polynomials,” Ukr. Mat. Zh., 44, No. 8, 1116–1123 (1992); English translation: Ukr. Math. J., 44, No. 8, 1018–1025 (1992).

  25. W. Malfiet, “The tanh method: a tool for solving certain classes of non-linear PDEs,” Math. Meth. Appl. Sci., 28, No. 17, 2031–2035 (2005).

    Article  MathSciNet  Google Scholar 

  26. A. Al-Mazmumy Mariam, “Adomian decomposition method for solving Goursat’s problems,” Appl. Math., 2, 975–980 (2011).

    Article  MathSciNet  Google Scholar 

  27. S. Mohammadi, “Solving pionic atom with Klein–Gordon equation,” Res. J. Phys., 4, 160–164 (2010).

    Article  Google Scholar 

  28. R. Moore, “A Runge–Kutta procedure for the Goursat problem in hyperbolic partial differential equations,” Arch. Ration. Mech. Anal., 7, 37–63 (1961).

    Article  MATH  Google Scholar 

  29. Mohd. Agos Salim Nasir and Ahmad Izani Md. Ismail, “Numerical solution of a linear Goursat problem: stability, consistency and convergence,” WSEAS Trans. Math., 3, No. 3, 616–619 (2004).

  30. J. K. Perring and T. H. R. Skyrme, “A model unified field equation,” Nuclear Phys., 31, 550–555 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  31. Yu. K. Podlipenko, Application of Approximation Method to the Solution of the Goursat Problem for Quasilinear Equations of Hyperbolic Type [in Russian], Preprint IM-77-13, Institute of Mathematics, Academy of Sciences of Ukr. SSR, Kiev (1977).

    Google Scholar 

  32. A. G. Popov and E. V. Maevskii, “Analytical approaches to the investigation of the sine-Gordon equation and pseudospherical surfaces,” Sovrem. Mat. Prilozhen. (Geom.), 31, 13–52 (2005).

    Google Scholar 

  33. F. Shakeri and M. Dehghan, “Numerical solution of the Klein–Gordon equation via He’s variational iteration method,” Nonlin. Dynam., 51, No. 1-2, 89–97 (2008).

    MathSciNet  MATH  Google Scholar 

  34. Sirendaoreji and Sun Jiong, “A direct method for solving sine-Gordon type equations,” Phys. Lett. A, 298, No. 2-3, 133–139 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  35. T. H. R. Skyrme, “Particle states of a quantized meson field,” Proc. Roy. Soc. Ser. A, 262, 237–245 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  36. N. Taghizadeh, M. Mirzazadeh, and F. Farahrooz, “Exact travelling wave solutions of the coupled Klein–Gordon equation by the infinite series method,” Appl. Appl. Math., 6, 1964–1972 (2011).

    MathSciNet  Google Scholar 

  37. V. Seng, K. Abbaoui, and Y. Cherruault, “Adomian’s polynomials for nonlinear operators,” Math. Comput. Model., 24, No. 1, 59–65 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  38. A.-M.Wazwaz, “A sine–cosine method for handling nonlinear wave equations,” Math. Comput. Model., 40, No. 5–6, 499–508 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  39. K. Yagdjian and A. Galstian, “The Klein–Gordon equation in anti-de-Sitter spacetime,” Rend. Semin. Mat. Univ. Politecn. Torino, 67, No. 2, 271–292 (2009).

    MathSciNet  MATH  Google Scholar 

  40. K. Yagdjian and A. Galstian, “Fundamental solutions for the Klein–Gordon equation in de Sitter spacetime,” Commun. Math. Phys., 285, No. 1, 293–344 (2009).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 64, No. 10, pp. 1394–1415, October, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makarov, V.L., Dragunov, D.V. & Sember, D.A. FD-method for solving the nonlinear klein–gordon equation. Ukr Math J 64, 1586–1609 (2013). https://doi.org/10.1007/s11253-013-0737-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-013-0737-2

Keywords

Navigation