Skip to main content
Log in

On branch points of three-dimensional mappings with unbounded characteristic of quasiconformality

  • Published:
Ukrainian Mathematical Journal Aims and scope

For open discrete mappings \( f:D\backslash \left\{ b \right\} \to {\mathbb{R}^3} \) of a domain \( D \subset {\mathbb{R}^3} \) satisfying relatively general geometric conditions in D \ {b} and having an essential singularity at a point \( b \in {\mathbb{R}^3} \), we prove the following statement: Let a point y 0 belong to \( \overline {{\mathbb{R}^3}} \backslash f\left( {D\backslash \left\{ b \right\}} \right) \) and let the inner dilatation K I (x, f) and outer dilatation K O (x, f) of the mapping f at the point x satisfy certain conditions. Let B f denote the set of branch points of the mapping f. Then, for an arbitrary neighborhood V of the point y 0, the set Vf(B f ) cannot be contained in a set A such that g(A) = I, where \( I = \left\{ {t \in \mathbb{R}:\left| t \right| < 1} \right\} \) and \( g:U \to {\mathbb{R}^n} \) is a quasiconformal mapping of a domain \( U \subset {\mathbb{R}^n} \) such that A ⊂ U.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. A. Sevost’yanov, “On the sets of branch points of mappings more general than quasiregular,” Ukr. Mat. Zh., 62, No. 2, 215–230 (2010); English translation: Ukr. Math. J., 62, No. 2, 241–258 (2010).

    Article  Google Scholar 

  2. O. Martio, V. Ryazanov, U. Srebro, and E. Yakubov, “Mappings with finite length distortion,” J. d’Anal. Math., 93, 215–236 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  3. E. A. Sevost’yanov, “On the theory of the removal of singularities for mappings with an unbounded characteristic of quasiconformality,” Izv. Ross. Akad. Nauk, Ser. Mat., 74, No. 1, 159–174 (2010).

    MathSciNet  Google Scholar 

  4. Yu. G. Reshetnyak, Space Mappings with Bounded Distortion [in Russian], Nauka, Novosibirsk (1982); English translation: American Mathematical Society, Providence, RI (1989).

    Google Scholar 

  5. O. Martio, S. Rickman, and J. Väisälä, “Topological and metric properties of quasiregular mappings,” Ann. Acad. Sci. Fenn., Ser. A1, 488, 1–31 (1971).

    Google Scholar 

  6. O. Martio, S. Rickman, and J. Väisälä, “Distortion and singularities of quasiregular mappings,” Ann. Acad. Sci. Fenn., Ser. A1, 465, 1–13 (1970).

    Google Scholar 

  7. J. Väisälä, Lectures on n-Dimensional Quasiconformal Mappings, Springer, New York (1971).

    MATH  Google Scholar 

  8. V. A. Zorich, “Lavrent’ev theorem on quasiconformal mappings of the space,” Mat. Sb., 116, No. 3, 415–433 (1967).

    Google Scholar 

  9. G. T. Whyburn, Analytic Topology, American Mathematical Society, New York (1942).

    MATH  Google Scholar 

  10. O. Martio, S. Rickman, and J. Väisälä, “Definitions for quasiregular mappings,” Ann. Acad. Sci. Fenn., Ser. AI. Math., 448, 1–40 (1969).

    Google Scholar 

  11. O. Lehto and K. Virtanen, Quasiconformal Mappings in the Plane, Springer, New York (1973).

    MATH  Google Scholar 

  12. Yu. F. Strugov, “Compactness of families of mappings quasiconformal in the mean,” Dokl. Akad. Nauk SSSR, 243, No. 4, 859–861 (1978).

    MathSciNet  Google Scholar 

  13. C. J. Bishop, V. Ya. Gutlyanskii, O. Martio, and M. Vuorinen, “On conformal dilatation in space,” Int. J. Math. Math. Sci., 22, 1397–1420 (2003).

    Article  MathSciNet  Google Scholar 

  14. V. M. Miklyukov, “Relative Lavrent’ev distance and prime ends of nonparametric surfaces,” Ukr. Math. Bull., 1, No. 3, 353–376 (2004).

    MathSciNet  Google Scholar 

  15. E. A. Poletskii, “Method of moduli for nonhomeomorphic quasiconformal mappings,” Mat. Sb., 83, No. 2, 261–272 (1970).

    MathSciNet  Google Scholar 

  16. F. John and L. Nirenberg, “On functions of bounded mean oscillation,” Commun. Pure Appl. Math., 14, 415–426 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Ignat’ev and V. Ryazanov, “Finite mean oscillation in the theory of mappings,” Ukr. Mat. Visn., 2, No. 3, 395–417 (2005).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 63, No. 1, pp. 69–79, January, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sevost’yanov, E.A. On branch points of three-dimensional mappings with unbounded characteristic of quasiconformality. Ukr Math J 63, 84–97 (2011). https://doi.org/10.1007/s11253-011-0489-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-011-0489-9

Keywords

Navigation