Skip to main content
Log in

Quasipoint spectral measures in the theory of dynamical systems of conflict

  • Published:
Ukrainian Mathematical Journal Aims and scope

A notion of spectral measure with quasipoint spectrum is introduced within the framework of the dynamic picture of interacting physical systems. It is shown that, in the case of conflict interaction with point measures, only quasipoint singularly continuous measures can be transformed into measures with pure point spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Kuang, “Basic properties of mathematical population models,” J. Biomath., No. 17, 129–142 (2002).

  2. K. Sigmund, “The population dynamics of conflict and cooperation,” Doc. Math. J. DMV, 1, 487–506 (1998).

    MathSciNet  Google Scholar 

  3. M. Bandyopadhyay and J. Chattopadhayay, “Ratio-dependent predator–prey model: effects of environmental fluctuation and stability,” Nonlinearity, No. 18, 913–936 (2005).

  4. Y. Lonzonn, S. Solomon, J. Goldenberg, and D. Mazarsky, “World-size global markets lead to economic instability,” Artificial Life, 357–370 (2003).

  5. J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge University, Cambridge (1998).

    MATH  Google Scholar 

  6. K. I. Takahashi and K. M. M. Salam, “Mathematical model of conflict with nonannihilating multi-opponent,” J. Interdiscipl. Math., 9, No. 3, 459–473 (2006).

    MathSciNet  MATH  Google Scholar 

  7. Y. Kuang and E. Beretta, “Global qualitative analysis of a ratio-dependent predator-prey system,” J. Math. Biol., No. 36, 389–406 (1998).

    Google Scholar 

  8. J. D. Murray, Mathematical Biology I: An Introduction, Springer, Berlin (2002).

    MATH  Google Scholar 

  9. S. Albeverio, V. Koshmanenko, and I. Samoilenko, “The conflict interaction between two complex systems: Cyclic migration,” J. Interdiscipl. Math., 11, No. 2, 163–185 (2008).

    MathSciNet  MATH  Google Scholar 

  10. A. J. Jones, Game Theory: Mathematical Models of Conflict, Horwood, New York (1980).

    MATH  Google Scholar 

  11. G. Owen, Game Theory, Academic Press, San Diego (1995).

    Google Scholar 

  12. V. D. Koshmanenko, “Reconstruction of the spectral type of limiting distributions in dynamical conflict systems,” Ukr. Mat. Zh., 59, No. 6, 771–784 (2007); English translation: Ukr. Math. J., 59, No. 6, 841–857 (2007).

    Article  MathSciNet  Google Scholar 

  13. T. Karataieva and V. Koshmanenko, “Origination of the singular continuous spectrum in the conflict dynamical systems,” Meth. Funct. Anal. Topol., 14, No. 1, 309–319 (2009).

    MathSciNet  Google Scholar 

  14. J. E. Hutchinson, “Fractals and self-similarity,” Indiana Univ. Math. J., 30, 713–747 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  15. Yu. M. Berezanskii, Selfadjoint Operators in Spaces of Functions of Infinitely Many Variables, American Mathematical Society, Providence, RI (1986).

    Google Scholar 

  16. S. Kakutani, “Equivalence of infinite product measures,” Ann. Math., 49, 214–224 (1948).

    Article  MathSciNet  MATH  Google Scholar 

  17. M. V. Prats’ovytyi, Fractal Approach to the Investigation of Singular Distributions [in Ukrainian], National Pedagogic University, Kyiv (1998).

    Google Scholar 

  18. K. J. Falconer, Fractal Geometry, Wiley, Chichester (1990).

    MATH  Google Scholar 

  19. H. Triebel, Fractals and Spectra Related to Fourier Analysis and Functional Spaces, Birkhäuser, Basel (1997).

    Google Scholar 

  20. V. Koshmanenko, “The structured similarity property for infinite products of measures,” in: Proc. of the Internat. Conf. “Infinite-Dimensional Analysis and Topology” (May 27–June 1, 2009, Yaremche) (2009), pp. 78–79.

  21. S. Albeverio, V. Koshmanenko, and G. Torbin, “Fine structure of the singular continuous spectrum,” Meth. Funct. Anal. Topol., 9, No. 2, 101–119 (2003).

    MathSciNet  MATH  Google Scholar 

  22. S. Albeverio, V. Koshmanenko, M. Pratsiovytyi, and G. Torbin, “Spectral properties of image measures under infinite conflict interactions,” Positivity, 10, 39–49 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  23. V. Koshmanenko and N. Kharchenko, “Spectral properties of image measures after conflict interactions,” Theory Stoch. Proc., 10, No. 3–4, 73–81 (2004).

    MathSciNet  Google Scholar 

  24. V. Koshmanenko, “Theorem on conflict for a pair of stochastic vectors,” Ukr. Mat. Zh., 55, No. 4, 555–560 (2003); English translation: Ukr. Math. J., 55, No. 4, 671–678 (2003).

    Article  MathSciNet  Google Scholar 

  25. V. Koshmanenko, “The theorem of conflict for probability measures,” Math. Meth. Oper. Res., 59, No. 2, 303–313 (2004).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 63, No. 2, pp. 187–199, February, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koshmanenko, V.D. Quasipoint spectral measures in the theory of dynamical systems of conflict. Ukr Math J 63, 222–235 (2011). https://doi.org/10.1007/s11253-011-0500-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-011-0500-5

Keywords

Navigation