Skip to main content
Log in

Sharp upper bounds of norms of functions and their derivatives on classes of functions with given comparison function

  • Published:
Ukrainian Mathematical Journal Aims and scope

For arbitrary [α, β] ⊂ R and p > 0, we solve the extremal problem

$$ \int\limits_\alpha^\beta {{{\left| {{x^{(k)}}(t)} \right|}^q}dt \to \sup, \quad q \geq p,\quad k = 0\quad {\text{or}}\quad q \geq 1,\quad k \geq 1}, $$

on the set of functions \( S_\varphi^k \) such that φ (i) is a comparison function for x (i), = 0, 1, …, k, and (in the case k = 0) L(x) p  ≤ L(φ) p , where

$$ L{(x)_p}: = \sup \left\{ {{{\left( {\int\limits_a^b {{{\left| {x(t)} \right|}^p}dt} } \right)}^{{{1} \left/ {p} \right.}}}:a,b \in {\mathbf{R}},\;\,\left| {x(t)} \right| > 0,\,\;t \in \left( {a,\,b} \right)} \right\}. $$

In particular, we solve this extremal problem on Sobolev classes and on bounded subsets of the spaces of trigonometric polynomials and splines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. P. Korneichuk, V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, Inequalities for Derivatives and Their Applications [in Russian], Naukova Dumka, Kiev (2003).

    Google Scholar 

  2. V. F. Babenko, “Investigations of Dnepropetrovsk mathematicians related to inequalities for derivatives of periodic functions and their applications,” Ukr. Mat. Zh., 52, No. 1, 9–29 (2000); English translation: Ukr. Math. J., 52, No. 1, 8–28 (2000).

    Article  Google Scholar 

  3. M. K. Kwong and A. Zettl, Norm Inequalities for Derivatives and Differences, Springer, Berlin (1992).

    MATH  Google Scholar 

  4. B. Bojanov and N. Naidenov, “An extension of the Landau–Kolmogorov inequality. Solution of a problem of Erdős,” J. d’Anal. Math., 78, 263–280 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Pinkus and O. Shisha, “Variations on the Chebyshev and L q theories of best approximation,” J. Approxim. Theory, 35, No. 2, 148–168 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  6. V. A. Kofanov, “On some extremal problems of different metrics for differentiable functions on the axis,” Ukr. Mat. Zh., 61, No. 6, 765–776 (2009); English translation: Ukr. Math. J., 61, No. 6, 908–922 (2009).

    Article  MathSciNet  Google Scholar 

  7. N. P. Korneichuk, V. F. Babenko, and A. A. Ligun, Extremal Properties of Polynomials and Splines [in Russian], Naukova Dumka, Kiev (1992).

    Google Scholar 

  8. A. N. Kolmogorov, “On inequalities between upper bounds of successive derivatives of a function on an infinite interval,” in: A. N. Kolmogorov, Selected Works, Mathematics and Mechanics [in Russian], Nauka, Moscow (1985), pp. 252–263.

    Google Scholar 

  9. A. A. Ligun, “Inequalities for upper bounds of functionals,” Anal. Math., 2, No. 1, 11–40 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  10. V. A. Kofanov, “Some sharp inequalities of Kolmogorov type,” Mat. Fiz., Anal., Geom., 9, No. 3, 1–8 (2002).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 63, No. 7, pp. 969–984, July, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kofanov, V.A. Sharp upper bounds of norms of functions and their derivatives on classes of functions with given comparison function. Ukr Math J 63, 1118–1135 (2011). https://doi.org/10.1007/s11253-011-0567-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-011-0567-z

Keywords

Navigation