Skip to main content
Log in

Estimates for weighted eigenvalues of a fourth-order elliptic operator with variable coefficients

  • Published:
Ukrainian Mathematical Journal Aims and scope

We investigate the Dirichlet weighted eigenvalue problem for a fourth-order elliptic operator with variable coefficients in a bounded domain in \( {\mathbb{R}^n} \). We establish a sharp inequality for its eigenvalues. It yields an estimate for the upper bound of the (k + 1)th eigenvalue in terms of the first k eigenvalues. Moreover, we also obtain estimates for some special cases of this problem. In particular, our results generalize the Wang–Xia inequality (J. Funct. Anal., 245, No. 1, 334–352 (2007)) for the clamped-plate problem to a fourth-order elliptic operator with variable coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. S. Ashbaugh, “Isoperimetric and universal inequalities for eigenvalues,” in: Spectral Theory and Geometry (Edinburgh, 1998), Cambridge University Press, Cambridge (1999), pp. 95–139.

    Google Scholar 

  2. M. S. Ashbaugh, “Universal eigenvalue bounds of Payne–Pólya–Weinberger, Hile–Protter and H. C.Yang,” Proc. Indian Acad. Sci. (Math. Sci.), 112, No. 1, 3–30 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  3. M. S. Ashbaugh and L. Hermi, “A unified approach to universal inequalities for eigenvalues of elliptic operators,” Pacif. J. Math., 217, No. 2, 201–219 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  4. Z. C. Chen and C. L. Qian, “Estimates for discrete spectrum of Laplacian operator with any order,” J. China Univ. Sci. Tech., 20, No. 3, 259–266 (1990).

    MathSciNet  MATH  Google Scholar 

  5. Q.-M. Cheng and H. C. Yang, “Inequalities for eigenvalues of a clamped plate problem,” Trans. Amer. Math. Soc., 358, No. 6, 2625–2635 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  6. Q.-M. Cheng and H. C. Yang, “Bounds on eigenvalues of Dirichlet Laplacian,” Math. Ann., 337, No. 1, 159–175 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  7. E. B. Davies, “Uniformly elliptic operators with measurable coefficients,” J. Funct. Anal., 132, No. 1, 141–169 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  8. G. N. Hile and M. H. Protter, “Inequalities for eigenvalues of the Laplacian,” Indiana Univ. Math. J., 29, No. 4, 523–538 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  9. S. M. Hook, “Domain independent upper bounds for eigenvalues of elliptic operator,” Trans. Amer. Math. Soc., 318, No. 2, 615–642 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  10. E. M. Harrell II and J. Stubbe, “On trace identities and universal eigenvalue estimates for some partial differential operators,” Trans. Amer. Math. Soc., 349, No. 5, 1797–1809 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  11. G. N. Hile and R. Z. Yeh, “Inequalities for eigenvalues of the biharmonic operator,” Pacif. J. Math., 112, No. 1, 115–133 (1984).

    MathSciNet  MATH  Google Scholar 

  12. K. Kurata and S. Sugano, “A remark on estimates for uniformly elliptic operators on weighted L p spaces and Morrey spaces,” Math. Nachr., 209, No. 1, 137–150 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  13. L. Ljung, “Recursive identification,” in: M. Hazewinkel and J. C.Willems (editors), Stochastic Systems: Mathematics of Filtering and Identification and Applications, Reidel, Dordrecht (1981), pp. 247–283.

    Google Scholar 

  14. P. S. Maybeck, Stochastic Models, Estimation, and Control III, Academic Press, New York (1982).

    Google Scholar 

  15. C. L. Qian and Z. C. Chen, “Estimates of eigenvalues for uniformly elliptic operator of second order,” Acta Math. Appl. Sinica, 10, No. 4, 349–355 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  16. L. E. Payne, G. Pólya, and H. F. Weinberger, “On the ratio of consecutive eigenvalues,” J. Math. Phys., 35, 289–298 (1956).

    MATH  Google Scholar 

  17. H. J. Sun, “Yang-type inequalities for weighted eigenvalues of a second order uniformly elliptic operator with a nonnegative potential,” Proc. Amer. Math. Soc., 138, No. 8, 2827–2837 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  18. H. J. Sun, Q.-M. Cheng, and H. C. Yang, “Lower order eigenvalues of Dirichlet Laplacian,” Manuscr. Math., 125, No. 2, 139–156 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  19. Q. L. Wang and C. Y. Xia, “Universal bounds for eigenvalues of the biharmonic operator on Riemannian manifolds,” J. Funct. Anal., 245, No. 1, 334–352 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  20. H. C. Yang, An Estimate of the Difference between Consecutive Eigenvalues, Preprint IC/91/60 of ICTP, Trieste (1991).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 63, No. 7, pp. 999–1008, July, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, HJ. Estimates for weighted eigenvalues of a fourth-order elliptic operator with variable coefficients. Ukr Math J 63, 1154–1164 (2011). https://doi.org/10.1007/s11253-011-0569-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-011-0569-x

Keywords

Navigation