Skip to main content
Log in

Weyl’s theorem for algebraically wF(p, r, q) operators with p, r > 0 and q ≥ 1

  • Published:
Ukrainian Mathematical Journal Aims and scope

If T (or T*) is an algebraically wF(p, r, q) operator with p, r > 0 and q ≥ 1 acting in an infinite-dimensional separable Hilbert space, then we prove that Weyl’s theorem holds for f(T) for any f ∈ Hol(σ(T)), where Hol(σ(T)) is the set of all analytic functions in an open neighborhood of σ(T). Moreover, if T* is a wF(p, r, q) operator with p, r > 0 and q ≥ 1, then the a-Weyl’s theorem holds for f(T). In addition, if T (or T*) is an algebraically wF(p, r, q) operator with p, r > 0 and q ≥ 1, then we establish the spectral mapping theorems for the Weyl spectrum and for the essential approximate point spectrum of T for any f ∈ Hol(σ(T)), respectively. Finally, we examine the stability of Weyl’s theorem and the a-Weyl’s theorem under commutative perturbations by finite-rank operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. A. Coburn, “Weyl’s theorem for nonnormal operators,” Mich. Math. J., 13, 285–288 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Berkani, “Index of B-Fredholm operators and generalization of a Weyl theorem,” Proc. Amer. Math. Soc., 130, 1717–1723 (2001).

    Article  MathSciNet  Google Scholar 

  3. V. Rakočevic, “Operators obeying a-Weyl’s theorem,” Rev. Roum. Math. Pures Appl., 10, 915–919 (1986).

    Google Scholar 

  4. S. V. Djordjević and Y. M. Han, “Browder’s theorem and spectral continuity,” Glasgow Math. J., 42, No. 3, 479–486 (2000).

    Article  MATH  Google Scholar 

  5. P. Aiena, “Classes of operators satisfying a-Weyl’s theorem,” Stud. Math., 169, No. 2, 105–122 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  6. P. Aiena, C. Carpintero, and E. Rosas, “Some characterizations of operators satisfying a-Browder’s theorem,” J. Math. Anal. Appl., 311, No. 2, 530–544 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  7. R. E. Curto and Y. M. Han, “Weyl’s theorem, a-Weyl’s theorem and local spectral theory,” J. London Math. Soc., 67, No. 2, 499–509 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  8. R. E. Harte and W. Y. Lee, “Another note on Weyl’s theorem,” Trans. Amer. Math. Soc., 349, No. 5, 2115–2124 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Oudghiri, “Weyl’s theorem and perturbations,” Integral Equat. Operator Theory, 53, 535–545 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  10. J. K. Finch, “The single valued extension property on a Banach space,” Pacif. J. Math., 58, 61–69 (1975).

    MathSciNet  MATH  Google Scholar 

  11. K. B. Laursen, “Operators with finite ascent,” Pacif. J. Math., 152, 323–336 (1992).

    MathSciNet  MATH  Google Scholar 

  12. M. Lahrouz and M. Zohry, “Weyl type theorems and the approximate point spectrum,” Irish Math. Soc. Bull., 55, 41–51 (2005).

    MathSciNet  MATH  Google Scholar 

  13. M. Berkani and J. Koliha, “Weyl type theorems for bounded linear operators,” Acta Sci. Math., 69, 359–376 (2003).

    MathSciNet  MATH  Google Scholar 

  14. C. Yang and J. Yuan, “On class wF(p, r, q) operators,” Acta Sci. Math. (Szeged), 71, No. 3–4, 767–779 (2005).

    MathSciNet  MATH  Google Scholar 

  15. J. Yuan and Z. Gao, “Spectrum of class wF(p, r, q) operators,” J. Ineq. Appl., 2007, Article ID 27195 (2007).

  16. R. E. Harte, Invertibility and Singularity for Bounded Linear Operators, Dekker, New York (1988).

    MATH  Google Scholar 

  17. K. B. Laursen and M. M. Neumann, An introduction to Local Spectral Theory, Clarendon, Oxford (2000).

    MATH  Google Scholar 

  18. V. Rakočevic, “Semi-Browder operators and perturbations,” Stud. Math., 122, 131–137 (1996).

    Google Scholar 

  19. P. Aiena and O. Monsalve, “The single valued extension property and the generalized Kato decomposition property,” Acta Sci. Math. (Szeged), 67, 461–477 (2001).

    MathSciNet  Google Scholar 

  20. M. Amouch and H. Zguitti, “On the equivalence of Browder’s and generalized Browder’s theorem,” Glasgow Math. J., 48, 179–185 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  21. J. J. Kolih, “Isolated spectral points,” Proc. Amer. Math. Soc., 124, 3417–3424 (1996).

    Article  MathSciNet  Google Scholar 

  22. M. Berkani, “B-Weyl spectrum and poles of the resolvent,” J. Math. Anal. Appl., 272, 596–603 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  23. V. Rakočevic, “Semi-Fredholm operators with finite ascent or descent and perturbation,” Proc. Amer. Math. Soc., 122, No. 12, 3823–3825 (1995).

    Article  Google Scholar 

  24. K. K. Otieno, “On the Weyl spectrum,” Ill. J. Math., 18, 208–212 (2005).

    Google Scholar 

  25. S. H. Lee and W. Y. Lee, “On Weyl’s theorem II,” Math. Jpn., 43, No. 3, 549–553 (1996).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 63, No. 8, pp. 1092–1102, August, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rashid, M.H.M. Weyl’s theorem for algebraically wF(p, r, q) operators with p, r > 0 and q ≥ 1. Ukr Math J 63, 1256–1267 (2012). https://doi.org/10.1007/s11253-012-0576-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-012-0576-6

Keywords

Navigation