Skip to main content
Log in

Boundary behavior of ring Q-homeomorphisms on Riemannian manifolds

  • Published:
Ukrainian Mathematical Journal Aims and scope

We study the problems of continuous and homeomorphic extensions to the boundary for so-called ring Q-homeomorphisms between domains on the Riemannian manifolds and establish conditions for the function Q(x) and the boundaries of the domains under which every ring Q-homeomorphism admits a continuous or homeomorphic extension to the boundary. This theory can be applied, in particular, to the Sobolev classes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. J. Bishop, V. Ya. Gutlyanskii, O. Martio, and M. Vuorinen, “On conformal dilatation in space,” Int. J. Math. Math. Sci., 22, 1397–1420 (2003).

    Article  MathSciNet  Google Scholar 

  2. T. V. Lomako, “On extension of some generalizations of quasiconformal mappings to a boundary,” Ukr. Mat. Zh., 61, No. 10, 1329–1337 (2009); English translation: Ukr. Math. J., 61, No. 10, 1568–1577 (2009).

    Article  MATH  Google Scholar 

  3. V. I. Ryazanov and E. A. Sevost’yanov, “Equicontinuous classes of ring Q-homeomorphisms,” Sib. Mat. Zh., 48, No. 6, 1361–1376 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  4. V. Ryazanov, U. Srebro, and E. Yakubov, “The Beltrami equation and ring homeomorphisms,” Ukr. Mat. Vestn., 4, No. 1, 97–115 (2007).

    MathSciNet  Google Scholar 

  5. E. S. Smolovaya, “Boundary behavior of ring Q-homeomorphisms in metric spaces,” Ukr. Mat. Zh., 62, No. 5, 682–689 (2010); English translation: Ukr. Math. J., 62, No. 5, 785–793 (2010).

    Article  MATH  Google Scholar 

  6. O. Martio, V. Ryazanov, U. Srebro, and E. Yakubov, Moduli in Modern Mapping Theory, Springer, New York (2009).

    MATH  Google Scholar 

  7. S. P. Finikov (editor), Riemannian Geometry in an Orthogonal Frame. On the Basis of Cartan’s Lectures Delivered at Sorbonne in 1926–1927 [in Russian], Moscow University, Moscow (1960).

  8. J. M. Lee, Riemannian Manifolds: An Introduction to Curvature, Springer, New York (1997).

    MATH  Google Scholar 

  9. É. G. Poznyak and E. V. Shikin, Differential Geometry [in Russian], Moscow University, Moscow (1990).

    Google Scholar 

  10. P. K. Rashevskii, Riemannian Geometry and Tensor Analysis [in Russian], Gostekhteorizdat, Moscow (1953).

    Google Scholar 

  11. F. W. Gehring, “Rings and quasiconformal mappings in space,” Trans. Amer. Math. Soc., 103, 353–393 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  12. W. Hurewicz and H. Wallman, Dimension Theory, Princeton University, Princeton (1948).

    MATH  Google Scholar 

  13. A. A. Ignat’ev and V. I. Ryazanov, “Finite mean oscillation in the mapping theory,” Ukr. Mat. Vestn., 2, No. 3, 395–417 (2005).

    MathSciNet  MATH  Google Scholar 

  14. J. Heinonen, Lectures on Analysis on Metric Spaces, Springer, New York (2001).

    Book  MATH  Google Scholar 

  15. V. I. Ryazanov and R. R. Salimov, “Weakly flat spaces and boundaries in the mapping theory,” Ukr. Mat. Vestn., 4, No. 2, 199–234 (2007).

    MathSciNet  Google Scholar 

  16. R. L. Wilder, Topology of Manifolds, American Mathematical Society, New York (1949).

    MATH  Google Scholar 

  17. S. G. Mikhlin, Linear Partial Differential Equations [in Russian], Vysshaya Shkola, Moscow (1977).

    Google Scholar 

  18. J. Väisälä, Lectures on n-Dimensional Quasiconformal Mappings, Springer, Berlin (1971).

    Google Scholar 

  19. Yu. G. Reshetnyak, Space Mappings with Bounded Distortion [in Russian], Nauka, Novosibirsk (1982).

    Google Scholar 

  20. K. Suominen, “Quasiconformal maps in manifolds,” Ann. Acad. Sci. Fenn. Ser. A. 1 Math., 393, 1–39 (1966).

    MathSciNet  Google Scholar 

  21. B. Fuglede, “Extremal length and functional completion,” Acta Math., 98, 171–219 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  22. Yu. G. Reshetnyak, “Generalized derivatives and differentiability almost everywhere,” Mat. Sb., 75, No. 3, 323–334 (1968).

    MathSciNet  Google Scholar 

  23. Yu. G. Reshetnyak, “Some geometric properties of functions and mappings with generalized derivatives,” Sib. Mat. Zh., 7, No. 4, 886–919 (1966).

    Google Scholar 

  24. P. Koskela and J. Onninen, “Mappings of finite distortion: Capacity and modulus inequalities,” J. Reine Angew. Math., 599, 1–26 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  25. S. P. Ponomarev, “N -1-property of mappings and the Luzin (N)-condition,” Mat. Zametki, 58, 411–418 (1995).

    MathSciNet  Google Scholar 

  26. S. Müller, “Higher integrability of determinants and weak convergence in L 1,” J. Reine Angew. Math., 412, 20–34 (1990).

    MathSciNet  MATH  Google Scholar 

  27. D. Kovtonyuk and V. Ryazanov, “Toward the theory of generalized quasiisometries,” Mat. Stud., 34, No. 2, 129–135 (2010).

    MathSciNet  MATH  Google Scholar 

  28. D. Kovtonyuk and V. Ryazanov, On Boundary Behavior of Generalized QuasiIsometries, ArXiv: 1005. 0247v1 [math. CV] (2010).

  29. E. S. Afanas’eva and V. I. Ryazanov, “Regular domains in the mapping theory on Riemannian manifolds,” Tr. Inst. Prikl. Mat. Mekh. NAN Ukr., 22, 1–10 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 63, No. 10, pp. 1299–1313, October, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afanas’eva, E.S. Boundary behavior of ring Q-homeomorphisms on Riemannian manifolds. Ukr Math J 63, 1479–1493 (2012). https://doi.org/10.1007/s11253-012-0594-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-012-0594-4

Keywords

Navigation