Skip to main content
Log in

Q-Permutable subgroups of finite groups

  • Published:
Ukrainian Mathematical Journal Aims and scope

A subgroup H of a group G is called Q-permutable in G if there exists a subgroup B of G such that (1) G = HB and (2) if H 1 is a maximal subgroup of H containing H QG , then H 1 B = BH 1 < G, where H QG is the largest permutable subgroup of G contained in H. In this paper, we prove the following statement: Let \( \mathcal{F} \) be a saturated formation containing \( \mathcal{U} \) and let G be a group with a normal subgroup H such that \( {{G} \left/ {H} \right.} \in \mathcal{F} \). If every maximal subgroup of every noncyclic Sylow subgroup of F*(H) having no supersolvable supplement in G is Q-permutable in G, then \( G \in \mathcal{F} \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ballester-Bolinches, Y. Wang, and X. Guo, “C-supplemented subgroups of finite groups,” Glasgow Math. J., 42, 383–389 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  2. K. Doerk and T. Hawkes, Finite Soluble Groups, de Gruyter, Berlin–New York (1992).

    Book  MATH  Google Scholar 

  3. F. Gross, “Conjugacy of odd order Hall subgroups,” Bull. London Math. Soc., 19, 311–319 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  4. W. Guo, The Theory of Classes of Groups, Science Press–Kluwer, Beijing (2000).

    MATH  Google Scholar 

  5. P. Hall, “A characteristic property of soluble groups,” J. London Math. Soc., 12, 188–200 (1937).

    Google Scholar 

  6. B. Huppert, Endliche Gruppen I, Springer, Berlin (1967).

    Book  MATH  Google Scholar 

  7. B. Huppert and N. Blackburn, Finite Groups III, Springer, Berlin (1982).

    Book  MATH  Google Scholar 

  8. O. H. Kegel, “On Huppert’s characterization of finite supersoluble groups,” in: Proceedings of the International Conference on the Theory of Groups (Canberra, 1965), New York (1967), pp. 209–215.

  9. O. H. Kegel, “Produkte nilpotenter gruppen,” Arch. Math. (Basel), 12, 90–93 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  10. L. Miao and W. Lempken, “On \( \mathcal{M} \)-supplemented subgroups of finite groups,” J. Group Theory, 12, No. 2, 271–287 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  11. K. Nakamura, “Beziehungen zwischen den Strukturen von Normalteiler und Quasinormalteiler,” Osaka J. Math., 7, 321–322 (1970).

    MathSciNet  MATH  Google Scholar 

  12. D. J. Robinson, A Course in the Theory of Groups, Springer, Berlin (1993).

    Google Scholar 

  13. A. N. Skiba, “On weakly s-permutable subgroups of finite groups,” J. Algebra, 315, 192–209 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  14. Y. Wang, “C-normality of groups and its properties,” J. Algebra, 78, 101–108 (1996).

    Google Scholar 

  15. Y. Wang, H. Wei, and Y. Li, “A generalization of Kramer’s theorem and its applications,” Bull. Austral. Math. Soc., 65, 467–475 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Xu, An Introduction to Finite Groups, Science Press, Beijing (1999) [in Chinese].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Miao.

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 63, No. 11, pp. 1534–1543, November, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pu, Z., Miao, L. Q-Permutable subgroups of finite groups. Ukr Math J 63, 1745–1755 (2012). https://doi.org/10.1007/s11253-012-0610-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-012-0610-8

Keywords

Navigation