Skip to main content
Log in

Best approximation by ridge functions in L p -spaces

  • Published:
Ukrainian Mathematical Journal Aims and scope

We study the approximation of the classes of functions by the manifold R n formed by all possible linear combinations of n ridge functions of the form r(a · x)): It is proved that, for any 1 ≤ qp ≤ ∞, the deviation of the Sobolev class W r p from the set R n of ridge functions in the space L q (B d) satisfies the sharp order n -r/(d-1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. R. Barron, “ Universal approximation bounds for superposition of a sigmoidal function,” IEEE Trans. Inform. Theory, 39, 930–945 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  2. R. A. DeVore, K. Oskolkov, and P. Petrushev, “Approximation by feed-forward neural networks,” Ann. Numer. Math., 4, 261–287 (1997).

    MATH  MathSciNet  Google Scholar 

  3. L. Devroye, L. Györfy, and G. Lugosi, A Probabilistic Theory of Pattern Recognition, Springer, New York (1996).

    MATH  Google Scholar 

  4. A. Erdelyi, ed., Higher Transcendental Functions. Vol. 2. Bateman Manuscript Project, McGraw Hill, New York (1953).

    Google Scholar 

  5. Y. Gordon, V. Maiorov, M. Meyer, and S. Reisner, “On best approximation by ridge functions in the uniform norm,” Constr. Approxim., 18, 61–85 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  6. V. Ya. Lin and A. Pinkus, “Fundamentality of ridge functions,” J. Approxim. Theory, 75, 295–311 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  7. V. Ya. Lin and A. Pinkus, “Approximation of multivariate functions,” Adv. Comput. Math., World Sci. (Singapore), 257–265 (1994).

  8. B. Logan and L. Shepp, “ Optimal reconstruction of functions from their projections,” Duke Math. J., 42, 645–659 (1975).

    Article  MATH  MathSciNet  Google Scholar 

  9. V. Maiorov, “ On best approximation by ridge functions,” J. Approxim. Theory, 99, 68–94 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  10. V. Maiorov, “On best approximation of classes by radial functions,” J. Approxim. Theory, 120, 36–70 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  11. V. Maiorov, R. Meir, and J. Ratsaby, “On the approximation of functional classes equipped with a uniform measure using ridge functions,” J. Approxim. Theory, 99, 95–111 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  12. V. Maiorov and R. Meir, “On the near optimality of the stochastic approximation of smooth functions by neural networks,” Adv. Comput. Math., 13, 79–103 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  13. V. Maiorov, K. I. Oskolkov, and V. N. Temlyakov, “Gridge approximation and Radon compass,” Approxim. Theory (a Volume dedicated to Blagovest Sendov), Ed. B. Bojanov, DARBA, Sofia, 284–309 (2002).

  14. Makovoz Y., “Random approximation and neural networks,” J. Approxim. Theory, 85, 98–109 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  15. H. N. Mhaskar, “Neural networks for optimal approximation of smooth and analytic functions,” Neural Comput., 8, 164–177 (1996).

    Article  Google Scholar 

  16. H. N. Mhaskar and C. A. Micchelli, “Dimension independent bounds on the degree of approximation by neural networks,” IBM J. Res. Develop., 38, 277–284 (1994).

    Article  MATH  Google Scholar 

  17. K. I. Oskolkov, “Ridge approximation, Chebyshev–Fourier analysis and optimal quadrature formulas,” Proc. Steklov Inst. Math., 219, 265–280 (1997).

    MathSciNet  Google Scholar 

  18. P. P. Petrushev, “Approximation by ridge functions and neural networks,” SIAM J. Math. Anal., 30, 291–300 (1998).

    Article  MathSciNet  Google Scholar 

  19. A. Pinkus, “Approximation by ridge functions, some density problems from neutral networks,” Surface Fitting and Multiresolution Method, 2, 279–292 (1997).

    MathSciNet  Google Scholar 

  20. E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, New Jersey, Princeton (1971).

    MATH  Google Scholar 

  21. V. Temlyakov, On Approximation by Ridge Functions, Preprint.

  22. A. F. Timan, Theory of Approximation of Functions of the Real Variable, Macmillan Co., New York (1963).

    Google Scholar 

  23. H. Tribel, Interpolation Theory, Function Spaces, Differential Operators, VEB Deutscher Verlag Wissenschaften, Berlin (1978).

    Google Scholar 

  24. V. Vapnik and A. Chervonkis, “Necessary and sufficient conditions for the uniform convergence of empirical means to their expectations,” Theory Probab. Appl., 3, 532–553 (1981).

    Google Scholar 

  25. N. Ya. Vilenkin, Special Functions and the Theory of Representations of Groups [in Russian], Fizmatgiz, Moscow (1965).

    Google Scholar 

  26. B. A. Vostretsov and M. A. Kreines, “Approximation of continuous functions by superpositions of plane waves,” Sov. Math. Dokl., 2, 1320–1329 (1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 62, No. 3, pp. 396–408, March, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maiorov, V.E. Best approximation by ridge functions in L p -spaces. Ukr Math J 62, 452–466 (2010). https://doi.org/10.1007/s11253-010-0364-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-010-0364-0

Keywords

Navigation