Skip to main content
Log in

On impulsive Sturm–Liouville operators with Coulomb potential and spectral parameter linearly contained in boundary conditions

  • Published:
Ukrainian Mathematical Journal Aims and scope

The Sturm–Liouville problem with linear discontinuities is investigated in the case where an eigenparameter appears not only in a differential equation but also in boundary conditions. Properties and the asymptotic behavior of spectral characteristics are studied for the Sturm–Liouville operators with Coulomb potential that have discontinuity conditions inside a finite interval. Moreover, the Weyl function for this problem is defined and uniqueness theorems are proved for a solution of the inverse problem with respect to this function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. A. Naimark, Linear Differential Operators [in Russian], Nauka, Moscow (1967).

    Google Scholar 

  2. R. Kh. Amirov, “On Sturm–Liouville operators with discontinuity conditions inside an interval,” J. Math. Anal. Appl., 317, 163–176 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  3. R. Bellman and K. Cooke, Differential–Difference Equations, Academic Press, New York (1963).

    MATH  Google Scholar 

  4. B. Ya. Levin, Entire Functions [in Russian], Moscow University, Moscow (1971).

    Google Scholar 

  5. V. F. Zhdanovich, “Formulas for zeros of Dirichlet polynomials and quasipolynomials,” Dokl. Akad. Nauk SSSR, 135, No. 8, 1046–1049 (1960).

    Google Scholar 

  6. M. G. Krein and B. Ya. Levin, “On entire almost periodic functions of exponential type,” Dokl. Akad. Nauk SSSR, 64, No. 3, 285–287 (1949).

    MathSciNet  Google Scholar 

  7. V. A. Ambartsumyan, “Über eine frage der eigenwerttheorie,” Z. Phys., 53, 690–695 (1929).

    Article  Google Scholar 

  8. N. Levinson, “The inverse Sturm–Liouville problem,” Math. Tidsskrift B, 25, 1–29 (1949).

    Google Scholar 

  9. B. M. Levitan, “On the determination of the Sturm–Liouville operator from one and two spectra,” Math. USSR Izvestija, 12, 179–193 (1978).

    Article  MATH  Google Scholar 

  10. K. Chadan, D. Colton, L. Paivarinta, and W. Rundell, An Introduction to Inverse Scattering and Inverse Spectral Problems, SIAM, Philadelphia (1997).

    Book  MATH  Google Scholar 

  11. F. Gesztesy and B. Simon, “Inverse spectral analysis with partial information on the potential. II. The case of discrete spectrum,” Trans. Amer. Math. Soc., 352, 2765–2789 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  12. F. Gesztesy and A. Kirsch, “One-dimensional Schrödinger operators with interactions singular on a discrete set,” J. Reine Angew. Math., 362, 28–50 (1985).

    MATH  MathSciNet  Google Scholar 

  13. R. P. Gilbert, “A method of ascent for solving boundary-value problem,” Bull. Amer. Math. Soc., 75, 1286–1289 (1969).

    Article  MATH  MathSciNet  Google Scholar 

  14. J. Pöschel and E. Trubowitz, Inverse Spectral Theory, Academic Press, Orlando (1987).

    MATH  Google Scholar 

  15. G. Borg, “Eine Umkehrung der Sturm–Liouvilleschen Eigenwertaufgabe,” Acta Math., 78, 1–96 (1946).

    Article  MATH  MathSciNet  Google Scholar 

  16. V. A. Marchenko, Sturm–Liouville Operators and Their Applications, Birkhäuser, Basel (1986).

    Google Scholar 

  17. R. Carlson, “Inverse spectral theory for some singular Sturm–Liouville problems,” J. Different. Equat., 106, No. 1, 121–140 (1993).

    Article  MATH  Google Scholar 

  18. R. Carlson, “A Borg–Levinson theorem for Bessel operators,” Pacif. J. Math., 177, No. 1, 1–26 (1997).

    Article  Google Scholar 

  19. H. Hochstadt, The Functions of Mathematical Physics, Wiley–Interscience, New York (1971).

    MATH  Google Scholar 

  20. V. A. Marchenko, “Some problems of the theory of one-dimensional linear differential operators of the second order. I,” Tr. Mosk. Mat. Obshch., 1, 327–340 (1952).

    Google Scholar 

  21. V. P. Meshchanov and A. L. Fel’dshtein, Automated Design of Directional Couplers [in Russian], Svyaz’, Moscow (1980).

    Google Scholar 

  22. O. N. Litvinenko and V. I. Soshnikov, Theory of Heterogeneous Lines and Their Applications in Radio Engineering [in Russian], Sovetskoe Radio, Moscow (1964).

    Google Scholar 

  23. R. J. Krueger, “Inverse problems for nonabsorbing media with discontinuous material properties,” J. Math. Phys., 23, No. 3, 396–404 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  24. D. G. Shepelsky, “The inverse problem of reconstruction of the medium’s conductivity in a class of discontinuous and increasing functions,” Adv. Soviet Math., 19, 209–231 (1994).

    MathSciNet  Google Scholar 

  25. R. S. Anderssen, “The effect of discontinuities in density and shear velocity on the asymptotic overtone structure of torsional eigenfrequencies of the Earth,” Geophys. J. Roy. Astron. Soc., 50, 303–309 (1977).

    Google Scholar 

  26. F. R. Lapwood and T. Usami, Free Oscillations of the Earth, Cambridge University Press, Cambridge (1981).

    MATH  Google Scholar 

  27. X. He and H. Volkmer, “Riesz bases of solutions of Sturm–Liouville equations,” J. Fourier Anal. Appl., 7, 297–307 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  28. R. Kh. Amirov and N. Topsakal, “A representation for solutions of Sturm–Liouville equations with Coulomb potential inside finite interval,” J. Cumhuriyet Univ. Natur. Sci., 28, No. 2, 11–38 (2007).

    Google Scholar 

  29. R. Kh. Amirov and N. Topsakal, “On Sturm–Liouville operators with Coulomb potential which have discontinuity conditions inside an interval,” Integr. Transforms Spec. Funct., 19, No. 12, 923–937 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  30. C. T. Fulton, “Two-point boundary-value problems with eigenvalue parameter contained in the boundary conditions,” Proc. Roy. Soc. Edinburgh A, 77, 293–308 (1977).

    MATH  MathSciNet  Google Scholar 

  31. C. T. Fulton, “Singular eigenvalue problems with eigenvalue parameter contained in the boundary conditions,” Proc. Roy. Soc. Edinburgh A, 87, 1–34 (1980).

    MATH  MathSciNet  Google Scholar 

  32. N. J. Guliyev, “Inverse eigenvalue problems for Sturm–Liouville equations with spectral parameter linearly contained in one of the boundary conditions,” Inverse Problems, 21, 1315–1330 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  33. P. A. Binding, P. J. Browne, and K. Seddighi, “Sturm–Liouville problems with eigenparameter-dependent boundary conditions,” Proc. Roy. Soc. Edinburgh A, 37, 57–72 (1993).

    Article  MathSciNet  Google Scholar 

  34. P. A. Binding and P. J. Browne, “Oscillation theory for indefinite Sturm–Liouville problems with eigenparameter-dependent boundary conditions,” Proc. Roy. Soc. Edinburgh A, 127, 1123–1136 (1997).

    MATH  MathSciNet  Google Scholar 

  35. N. Yu. Kapustin and E. I. Mossiev, “Oscillation properties of solutions to a nonselfadjoint spectral problem with spectral parameter in the boundary condition,” Different. Equat., 35, 1031–1034 (1999).

    MATH  Google Scholar 

  36. V. N. Pivovarchik and C. van der Mee, “The inverse generalized Regge problem,” Inverse Problems, 17, 1831–1845 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  37. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics, Pergamon Press, Oxford (1963).

    MATH  Google Scholar 

  38. C. van der Mee and V. N. Pivovarchik, “A Sturm–Liouville inverse spectral problem with boundary conditions depending on the spectral parameter,” Funct. Anal. Appl., 36, No. 4, 314–317 (2002).

    Google Scholar 

  39. N. N. Voitovich, B. Z. Katsenelenbaum, and A. N. Sivov, Generalized Method of Eigenoscillations in Diffraction Theory [in Russian], Nauka, Moscow (1997).

    Google Scholar 

  40. A. V. Lykov and Yu. A. Mikhailov, Theory of Heat and Mass Transfer, Gosénergoizdat, Moscow (1963).

    Google Scholar 

  41. J. Walter, “Regular eigenvalue problems with eigenvalue parameter in the boundary condition,” Math. Z., 133, 301–312 (1973).

    Article  MATH  MathSciNet  Google Scholar 

  42. B. M. Levitan, Inverse Sturm–Liouville Problems [in Russian], Nauka, Moscow (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 62, No. 9, pp. 1155–1172, September, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amirov, R.K., Topsakal, N. & Güldü, Y. On impulsive Sturm–Liouville operators with Coulomb potential and spectral parameter linearly contained in boundary conditions. Ukr Math J 62, 1345–1366 (2011). https://doi.org/10.1007/s11253-011-0436-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-011-0436-9

Keywords

Navigation