Skip to main content
Log in

Quasilinear hyperbolic stefan problem with nonlocal boundary conditions

  • Published:
Ukrainian Mathematical Journal Aims and scope

Using the method of contracting mappings, we prove, for small values of time, the existence and uniqueness of a generalized Lipschitz solution of a mixed problem with unknown boundaries for a hyperbolic quasilinear system of first-order equations represented in terms of Riemann invariants with nonlocal (nonseparated and integral) boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. C. Gupta, The Classical Stefan Problem: Basic Concepts, Modeling and Analysis, Elsevier, Amsterdam (2003).

    Google Scholar 

  2. A. Yu. Ishlinskii, “Longitudinal oscillations of a rod in the case of a nonlinear law of aftereffect and relaxation,” Prikl. Mat. Mekh., 4, Issue 1, 79–92 (1940).

    Google Scholar 

  3. M. Reiner, Rheology, Springer, Berlin (1958).

    Google Scholar 

  4. S. A. Gabov, New Problems in the Mathematical Theory of Waves [in Russian], Nauka, Moscow (1998).

    Google Scholar 

  5. C. Cattaneo, “Sulla conduzione del calore,” Atti Semin. Mat. Fis. Univ. Modena, 3, 3–21 (1948–1949).

    Google Scholar 

  6. A. V. Lykov, Theory of Heat Conduction [in Russian], Vysshaya Shkola, Moscow (1967).

    Google Scholar 

  7. L. I. Serbina, Nonlocal Mathematical Models of Transfer in Water-Bearing Systems [in Russian], Nauka, Moscow (2007).

    Google Scholar 

  8. A. Friedman, “The Stefan problem for a hyperbolic heat equation,” Math. Anal. Appl., 138, No. 1, 249–279 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  9. Yu. A. Mitropolsky and A. A. Berezovsky, Free and Nonlocal Boundary-Value Problems in Metallurgy, Medicine, Ecology, and Materials Science. Mathematical Models and Constructive Methods of Solution, Institute of Mathematics, Ukrainian National Academy of Sciences, Kiev (2000).

    Google Scholar 

  10. D. R. Sinha, “A note on mechanical response in a piezoelectric transducer to an impulsive voltage input,” Proc. Nat. Inst. Sci. India A, 31, No. 4, 395–402 (1966).

    Google Scholar 

  11. I. Song, “Some developments in mathematical demography and their application to the People’s Republic of China,” Theor. Pop. Biol., 22, 276–299 (1982).

    Google Scholar 

  12. L. P. Ginzburg, “On the dynamics and control of the age structure of population,” Probl. Kibern., Issue 23, 261–274 (1970).

    Google Scholar 

  13. V. S. Krutikov, “On one solution of the inverse problem for a wave equation with nonlinear conditions in domains with moving boundaries,” Prikl. Mekh. Mat., 55, 1058–1062 (1991).

    MathSciNet  Google Scholar 

  14. B. I. Ptashnyk, V. S. Il’kiv, I. Ya. Kmit’, and V. M. Polishchuk, Nonlocal Boundary-Value Problems for Partial Differential Equations [in Ukrainian], Naukova Dumka, Kyiv (2002).

    Google Scholar 

  15. V. M. Kyrylych, “A nonlocal problem of the Stefan type for hyperbolic systems of the first order,” Ukr. Mat. Zh., 40, No. 1, 121–124 (1988).

    Google Scholar 

  16. Lee Da-tsin and Y. Wen-tsu, “Some existence theorems for quasilinear hyperbolic systems of partial differential equations in two independent variables. II. Typical boundary-value problems of functional form and typical free boundary problems,” Sci. Sinica, 13, No. 5, 551–562 (1964).

    MathSciNet  Google Scholar 

  17. Yu. P. Samarin, “On one nonlinear problem for a wave equation in a homogeneous space,” Prikl. Mat. Mekh., 28, No. 3, 542–543 (1964).

    Google Scholar 

  18. C. D. Hill, “A hyperbolic free boundary problem,” J. Math. Anal. Appl., 31, No. 1, 117–129 (1970).

    Article  MATH  MathSciNet  Google Scholar 

  19. N. V. Shemetov, “A hyperbolic Stefan problem,” in: Some Applications of Functional Analysis to Problems of Mathematical Physics [in Russian], Institute of Mathematics, Academy of Sciences of USSR, Siberian Division, Novosibirsk (1990), pp. 127–144.

    Google Scholar 

  20. L. de Socio and G. Gualtieri, “A hyperbolic Stefan problem,” Quart. Appl. Math., 41, No. 2, 253–259 (1983).

    MATH  MathSciNet  Google Scholar 

  21. A. D. Solomon, V. Alexiades, D. G. Wilson, and Y. Drake, “On the formulation of hyperbolic Stefan problems,” Quart. Appl. Math., 43, No. 3, 295–304 (1985).

    MATH  MathSciNet  Google Scholar 

  22. T. D. Dzhuraev and Zh. O. Takhirov, “A hyperbolic Stefan problem,” Differents. Uravn., 30, No. 5, 821–831 (1994).

    MathSciNet  Google Scholar 

  23. R. N. Khubiev, “A boundary-value problem with free boundary for a one-dimensional wave equation,” Differents. Uravn., 24, No. 10, 1801–1804 (1988).

    MathSciNet  Google Scholar 

  24. G. Beregowa, W. Kyrylycz, and W. Flud, “Hiperboliczne zagadnienie Stefana o nielokalnych warunkach na prostej,” Zesz. Nauk. Pol. Opolskiej Mat., No. 230, z. 14, 31–42 (1997).

  25. R. V. Andrusyak, V. M. Kirilich, and A. D. Myshkis, “Local and global solvability of a quasilinear hyperbolic Stefan problem on a straight line,” Differents. Uravn., 42, No. 4, 489–503 (2006).

    MathSciNet  Google Scholar 

  26. A. D. Myshkis and A. M. Filimonov, “On global continuous solvability of a mixed problem for one-dimensional hyperbolic systems of quasilinear equations,” Differents. Uravn., 44, No. 3, 1–15 (2008).

    MathSciNet  Google Scholar 

  27. V. M. Kirilich and A. M. Filimonov, “A generalized continuous solvability of a problem with unknown boundaries for singular hyperbolic systems of quasilinear equations,” Mat. Stud., 30, No. 1, 42–60 (2008).

    MathSciNet  Google Scholar 

  28. J. Turo, “Mixed problems for quasilinear hyperbolic systems,” Nonlin. Anal., Theory, Meth., Appl., 30, No. 4, 2329–2340 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  29. Li Ta-tsien, Global Classical Solutions for Quasilinear Hyperbolic Systems, Masson, New York (1994).

    MATH  Google Scholar 

  30. V. M. Kyrylych, “A multipoint problem for a hyperbolic singular quasilinear system of equations in a domain with unknown boundaries,” Dopov. Nats. Akad. Nauk Ukr., No. 7, 11–16 (2009).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 62, No. 9, pp. 1173–1199, September, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrusyak, R.V., Burdeina, N.O. & Kyrylych, V.M. Quasilinear hyperbolic stefan problem with nonlocal boundary conditions. Ukr Math J 62, 1367–1396 (2011). https://doi.org/10.1007/s11253-011-0437-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-011-0437-8

Keywords

Navigation