Skip to main content
Log in

Elements of a non-gaussian analysis on the spaces of functions of infinitely many variables

  • Published:
Ukrainian Mathematical Journal Aims and scope

We present a review of some results of the non-Gaussian analysis in the biorthogonal approach and consider elements of the analysis associated with the generalized Meixner measure. The main objects of our interest are stochastic integrals, operators of stochastic differentiation, elements of theWick calculus, and related topics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Accardi, “Meixner classes and the square of white noise,” Contemp. Math., 137, 1–13 (2003).

    Google Scholar 

  2. L. Accardi and A. Boukas, “The semi-martingale property of the square of white noise integrators,” Lect. Notes Pure Appl. Math., 227, 1–19 (2002).

    MathSciNet  Google Scholar 

  3. L. Accardi and M. Bozéjko, “Interacting Fock space and Gaussianization of probability measures,” Infinite Dimen. Anal. Quantum Probab. Relat. Topol., 1, No. 4, 663–670 (1998).

    Article  MATH  Google Scholar 

  4. L. Accardi, F. Fagnola, and J. Quaegebeur, “A representation-free quantum stochastic calculus,” J. Funct. Anal., 104, No. 1, 149–197 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  5. L. Accardi, U. Franz, and M. Skeide, “Renormalized squares of white noise and other non-Gaussian noises as Lévy processes on real Lie algebras,” Comm. Math. Phys., 228, 123–150 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  6. S. Albeverio, Yu. M. Berezansky, and V. A. Tesko, “A generalization of an extended stochastic integral,” Ukr. Math. J., 59, No. 5, 645–677 (2007).

    Article  MathSciNet  Google Scholar 

  7. S. Albeverio, Yu. L. Daletsky, Yu. G. Kondrat’ev, and L. Streit, “Non-Gaussian infinite-dimensional analysis,” J. Funct. Anal., 138, 311–350 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  8. S. Albeverio, Yu. G. Kondrat’ev, and L. Streit, “How to generalize white-noise analysis to non-Gaussian spaces,” Proc. Simp. “Dynamics of Complex and Irregular Systems”, World Scientific, Singapore (1993), pp. 48–60.

  9. C. Anderson, “Some properties of Appell-like polynomials,” J. Math. Anal. Appl., 19, 475–491 (1967).

    Article  MATH  MathSciNet  Google Scholar 

  10. V. V. Baklan, “On one generalization of stochastic integrals,” Dokl. Akad. Nauk USSR. Ser. A, No. 4, 291–294 (1976).

  11. F. E. Benth, “The Gross derivative of generalized random variables,” Infinite Dimen. Anal. Quantum Probab. Relat. Topol., 2, No. 3, 381–396 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  12. Yu. M. Berezansky, “Infinite-dimensional analysis related to generalized translation operator,” Ukr. Math. J., 49, No. 3, 403–450 (1997).

    Article  Google Scholar 

  13. Yu. M. Berezansky, “Pascal measure on generalized functions and the corresponding generalized Meixner polynomials,” Meth. Funct. Anal. Topol., 8, No. 1, 1–13 (2002).

    MathSciNet  Google Scholar 

  14. Yu. M. Berezansky, Self-Adjoint Operators in the Spaces of Functions Depending on Infinitely-Many Variables [in Russian], Naukova Dumka, Kiev (1978).

    Google Scholar 

  15. Yu. M. Berezansky, “Spectral approach to white-noise analysis,” Proc. Symp. “Dynamics of Complex and Irregular Systems”, World Scientific, Singapore (1993), pp. 131–140.

  16. Berezansky Yu. M. and Kondrat’ev Yu. G., “Biorthogonal systems in hypergroups: an extension of non-Gaussian analysis,” Meth. Funct. Anal. Topol., 2, No. 2, 1–50 (1996).

    MATH  MathSciNet  Google Scholar 

  17. Yu. M. Berezansky and Yu. G. Kondrat’ev, Spectral Methods in Infinite-Dimensional Analysis [in Russian], Naukova Dumka, Kiev (1988).

    Google Scholar 

  18. Yu. M. Berezansky, V. D. Livinsky, and E. W. Lytvynov, “Generalization of Gaussian white noise analysis,” Meth. Funct. Anal. Topol., 1, No. 1, 28–55 (1995).

    MATH  MathSciNet  Google Scholar 

  19. Yu. M. Berezansky, E. W. Lytvynov, and D. A. Mierzejewski, “The Jacobi field of a Lévy process,” Ukr. Math. J., 55, No. 5, 853–858 (2003).

    Article  MathSciNet  Google Scholar 

  20. Yu. M. Berezansky and D. A. Mierzejewski, “The structure of extended symmetric Fock space,” Meth. Funct. Anal. Topol., 6, No. 4, 1–13 (2000).

    MATH  MathSciNet  Google Scholar 

  21. Yu. M. Berezansky and Yu. S. Samoilenko, “Nuclear spaces of functions of infinitely many variables,” Ukr. Math. J., 25, No. 6, 599–609 (1973).

    Article  Google Scholar 

  22. Yu. M. Berezansky and V. A. Tesko, “An approach to the generalization of white-noise analysis,” Operator Theory: Adv. Appl., 190, 123–139 (2009).

    MathSciNet  Google Scholar 

  23. Yu. M. Berezansky and V. A. Tesko, “Orthogonal approach to the construction of the theory of generalized functions of infinitely many variables and the Poisson analysis of White Noise,” Ukr. Math. J., 56, No. 12, 1885–1914 (2004).

    Article  Google Scholar 

  24. Yu. M. Berezansky and V. A. Tesko, “Spaces of test and generalized functions related to generalized translation operators,” Ukr. Math. J., 55, No. 12, 1907–1979 (2003).

    Article  Google Scholar 

  25. Yu. M. Berezansky, G. F. Us, and Z. G. Sheftel, Functional Analysis, Birkhäuser, Basel (1996).

    Book  MATH  Google Scholar 

  26. R. P. Boas and R. C. Buck, Polynomial Expansions of Analytic Functions, Springer, Berlin (1964).

    MATH  Google Scholar 

  27. D. M. Chung, T. S. Chung, and U. C. Ji, “A characterization theorem for operators on white noise functionals,” J. Math. Soc. Jpn., 51, No. 2, 437–447 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  28. D. M. Chung, U. C. Ji, and N. Obata, “Higher powers of quantum white noises in terms of integral kernel operators,” Infinite Dimen. Anal. Quantum Probab. Relat. Top., 1, No. 4, 533–559 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  29. D. M. Chung, U. C. Ji, and N. Obata, “Quantum stochastic analysis via white noise operators in weighted Fock space,” Rev. Math. Phys., 14, No. 3, 241–272 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  30. Yu. L. Daletsky, “A biorthogonal analog of the Hermite polynomials and the inversion of the Fourier transform with respect to a non-Gaussian measure,” Funct. Anal. Appl., 25, No. 2, 138–140 (1991).

    Article  MathSciNet  Google Scholar 

  31. Yu. L. Daletsky and S. N. Paramonova, “One formula of the theory of Gaussian measures and the estimation of stochastic integrals,” Teor. Ver. Prilozhen., 19, No. 4, 845–849 (1974).

    Google Scholar 

  32. G. Di Nunno, T. Meyer-Brandis, B. Oksendal, and F. Proske, “Malliavin calculus and anticipative Itô formulae for Lévy processes,” Infinite Dimen. Anal. Quantum Probab. Relat. Top., 8, No. 2, 235–258 (2005).

    Article  MATH  Google Scholar 

  33. G. Di Nunno, B. Oksendal, and F. Proske, “Malliavin calculus for Lévy processes with applications to finance,” Universitext, Springer, Berlin (2009).

  34. G. Di Nunno, B. Oksendal, and F. Proske, “White noise analysis for Lévy processes,” J. Funct. Anal., 206, 109–148 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  35. S. Dineen, “Complex analysis in locally convex spaces,” Math. Stud., Amsterdam, North-Holland (1981), 57.

  36. A. A. Dorogovtsev, “Extended stochastic integral for smooth functionals of white noise,” Ukr. Math. J., 41, No. 11, 1252–1258 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  37. A. A. Dorogovtsev, “A property of trajectories of extended stochastic integrals,” Sib. Math. J., 34, No. 5, 825–828 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  38. A. A. Dorogovtsev, “Stochastic integral with respect to the Arratia flow,” Dokl. Akad. Nauk, 410, No. 2, 156–157 (2006).

    MathSciNet  Google Scholar 

  39. A. A. Dorogovtsev, “Boundary-value problems for stochastic equations with anticipation,” Dokl. Akad. Nauk, 418, No. 4, 443–446 (2008).

    Google Scholar 

  40. A. A. Dorogovtsev, “Fourier transform of Wiener functionals and various methods of stochastic integration,” Theor. Probab. Appl., 34, No. 4, 705–709 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  41. A. A. Dorogovtsev, “Elements of stochastic differential calculus,” in: Math. Today’88 [in Russian], Vyshcha Shkola, Kiev (1988), pp. 105–131.

    Google Scholar 

  42. A. A. Dorogovtsev, “Equations with random Gaussian operators and stochastic calculus,” Selected Problems in the Contemporary Theory of Random Processes [in Russian], Institute of Mathematics, Academy of Sciences of the Ukrainian SSR, Kiev (1988), pp. 52–60.

  43. A. A. Dorogovtsev, “On the family of Itô formulas for the logarithmic processes,” Asymptotic Analysis of Random Evolutions [in Ukrainian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1994), pp. 100–112.

  44. A. A. Dorogovtsev, “On the localization of an extended stochastic integral,” Sb. Mat., 197, No. 9–10, 1273–1295 (2006).

    MATH  MathSciNet  Google Scholar 

  45. A. A. Dorogovtsev, “One version of the Clark representation theorem for Arratia flows,” Theory Stochast. Proc., 11, No. 3–4, 63–70 (2005).

    MathSciNet  Google Scholar 

  46. A. A. Dorogovtsev, Stochastic Analysis and Random Mappings in Hilbert Spaces [in Russian], Naukova Dumka, Kiev (1992).

    Google Scholar 

  47. A. A. Dorogovtsev, Stochastic Equations with Anticipation, Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1996).

    Google Scholar 

  48. A. A. Dorogovtsev, “Stochastic integrals with respect to compatible random measures,” Ukr. Math. J., 52, No. 8, 1215–1229 (2000).

    Article  MathSciNet  Google Scholar 

  49. A. A. Dorogovtsev, “Stochastic integrals with respect to Gaussian random measures,” Theor. Probab. Math. Statist., 44, 53–59 (1991).

    Google Scholar 

  50. A. A. Dorogovtsev, “Stochastic integration and a class of Gaussian random processes,” Ukr. Math. J., 50, No. 4, 550–561 (1998).

    Article  MathSciNet  Google Scholar 

  51. I. M. Gelfand and N. Ya. Vilenkin, Generalized Functions, Academic Press, New York–London (1964).

  52. B. Grigelionis, “Processes of Meixner type,” Lith. Math. J., 39, No. 1, 33–41 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  53. B. Grigelionis, “Generalized z-distributions and related stochastic processes,” Lith. Math. J., 41, No. 3, 239–251 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  54. T. Hida, “Analysis of Brownian functionals,” Math. Lect. Notes, 13, IV+61 (1975).

  55. T. Hida, Brownian Motion, Springer, New York (1980).

    MATH  Google Scholar 

  56. T. Hida, H. H. Kuo, J. Potthoff, and L. Streit, White Noise. An Infinite-Dimensional Calculus, Kluwer, Dordrecht (1993).

    MATH  Google Scholar 

  57. M. Hitsuda, “Formula for Brownian partial derivatives,” Proc. Second Japan–USSR Symp. on Probab. Theory (1972), pp. 111–114.

  58. Z. Y. Huang and Y. Wu, “Interacting Fock expansion of Lévy white noise functionals,” Acta Appl. Math., 82, 333–352 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  59. Y. Itô, “Generalized Poisson functionals,” Probab. Theory Relat. Fields, 77, 1–28 (1988).

    Article  MATH  Google Scholar 

  60. Y. Itô and I. Kubo, “Calculus on Gaussian and Poisson white noises,” Nagoya Math. J., 111, 41–84 (1988).

    MATH  MathSciNet  Google Scholar 

  61. U. C. Ji and N. Obata, “A role of Bargmann–Segal spaces in characterization and expansion of operators on Fock space,” J. Math. Soc. Jpn., 56, No. 2, 311–338 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  62. U. C. Ji, N. Obata, and H. Ouerdiane, “Quantum Lévy Laplacian and associated heat equation,” J. Funct. Anal., 249, No. 1, 31–54 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  63. Yu. M. Kabanov, “Extended stochastic integrals,” Teor. Ver. Prilozhen., 20, No. 4, 725–737 (1975).

    MathSciNet  Google Scholar 

  64. Yu. M. Kabanov and A. V. Skorokhod, “Extended stochastic integrals,” Proc. School–Seminar on the Theory of Stochastic Processes [in Russian], Institute of Physics and Mathematics, Vilnius (1975), pp. 123–167.

  65. N. A. Kachanovsky, “A generalized stochastic derivative connected with colored noise measures,” Meth. Funct. Anal. Topol., 10, No. 4, 11–29 (2004).

    MATH  MathSciNet  Google Scholar 

  66. N. A. Kachanovsky, “An extended stochastic integral and a Wick calculus on parametrized Kondratiev-type spaces of Meixner white noise,” Infinite Dimen. Anal. Quantum Probab. Relat. Top., 11, No. 4, 541–564 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  67. N. A. Kachanovsky, “Biorthogonal Appell-like systems in a Hilbert space,” Meth. Funct. Anal. Topol., No. 3–4, 36–52 (1996).

  68. N. A. Kachanovsky, “Dual Appell-like systems and finite-order spaces in non-Gaussian infinite dimensional analysis,” Meth. Funct. Anal. Topol., 4, No. 2, 41–52 (1998).

    MathSciNet  Google Scholar 

  69. N. A. Kachanovsky, “Dual Appell system and Kondrat’ev spaces in the analysis on Schwartz spaces,” Ukr. Math. J., 49, No. 4, 581–589 (1997).

    Article  Google Scholar 

  70. N. A. Kachanovsky, “Generalized stochastic derivatives on a space of regular generalized functions of Meixner white noise,” Meth. Funct. Anal. and Top., 14, No. 1, 32–53 (2008).

    MATH  MathSciNet  Google Scholar 

  71. N. A. Kachanovsky, “Generalized stochastic derivatives on parametrized spaces of regular generalized functions of Meixner white noise,” Meth. Funct. Anal. Topol., 14, No. 4, 334–350 (2008).

    MATH  MathSciNet  Google Scholar 

  72. N. A. Kachanovsky, “Generalized stochastic derivatives on the spaces of nonregular generalized functions of Meixner white noise,” Ukr. Math. J., 60, No. 6, 848–875 (2008).

    Article  MathSciNet  Google Scholar 

  73. N. A. Kachanovsky, “On an extended stochastic integral and the Wick calculus on the connected with the generalized Meixner measure Kondratiev-type spaces,” Meth. Funct. Anal. Topol., 13, No. 4, 338–379 (2007).

    MATH  MathSciNet  Google Scholar 

  74. N. A. Kachanovsky, “An analog of stochastic integral andWick calculus in non-Gaussian infinite-dimensional analysis,” Meth. Funct. Anal. Topol., 3, No. 3, 1–12 (1997).

    MathSciNet  Google Scholar 

  75. N. A. Kachanovsky, “On biorthogonal approach to construction of non-Gaussian analysis,” Can. Math. Soc. Conf. Proc., 29, 367–376 (2000).

    MathSciNet  Google Scholar 

  76. N. A. Kachanovsky, “On the extended stochastic integral connected with the Gamma-measure on an infinite-dimensional space,” Meth. Funct. Anal. Topol., 8, No. 2, 10–32 (2002).

    MATH  MathSciNet  Google Scholar 

  77. N. A. Kachanovsky, “Pseudodifferential equations and a generalized translation operator in non-Gaussian infinite-dimensional analysis,” Ukr. Math. J., 51, No. 10, 1503–1511 (1999).

    Article  Google Scholar 

  78. N. A. Kachanovsky, “Wick algebras on the spaces of colored noise analysis and its application to quantum stochastic calculus,” Spectral Evolut. Problems, 9, 138–145 (1999).

    MathSciNet  Google Scholar 

  79. N. A. Kachanovsky and S. V. Koshkin, “Minimality of Appell-like systems and imbeddings of test function spaces in a generalization of white noise analysis,” Meth. Funct. Anal. Topol., 5, No. 3, 13–25 (1999).

    MATH  MathSciNet  Google Scholar 

  80. N. A. Kachanovsky and V. A. Tesko, “Stochastic integral of Hitsuda–Skorokhod-type on the extended Fock space,” Ukr. Math. J., 61, No. 6, 873–907 (2009).

    Article  MathSciNet  Google Scholar 

  81. Yu. G. Kondrat’ev, “A space of entire functions of infinitely many variables connected with the rigging of a Fock space,” in: Spectral Analysis of Differential Operators [in Russian], Institute of Mathematics, Academy of Sciences of Ukrainian SSR, Kiev (1980), pp. 18–37.

    Google Scholar 

  82. Yu. G. Kondrat’ev, “Nuclear spaces of entire functions in problems of infinite-dimensional analysis,” Dokl. Akad. Nauk SSSR, 254, No. 6, 1325–1329 (1980).

    MathSciNet  Google Scholar 

  83. Yu. G. Kondrat’ev, “Wick powers of Gaussian random processes,” in: Meth. Funct. Anal. Probl. Math. Phys. [in Russian], Institute of Mathematics, Academy of Sciences of Ukrainian SSR, Kiev (1978), pp. 129–158.

    Google Scholar 

  84. Yu. G. Kondrat’ev and E. W. Lytvynov, “Operators of gamma white noise calculus,” Infinite Dimen. Anal. Quantum Probab. Relat. Top., 3, No. 3, 303–335 (2000).

    Article  MathSciNet  Google Scholar 

  85. Yu. G. Kondrat’ev and Yu. S. Samoilenko, “Generalized derivatives of probability measures on ℝ,” Meth. Funct. Anal. Problems Math. Phys. [in Russian], Institute of Mathematics, Academy of Sciences of Ukrainian SSR, Kiev (1978), pp. 159–176.

  86. Yu. G. Kondrat’ev and Yu. S. Samoilenko, “Integral representation of generalized positive-definite kernels of infinitely many variables,” Dokl. Akad. Nauk SSSR, 227, No. 4, 800–803 (1976).

    MathSciNet  Google Scholar 

  87. Yu. G. Kondrat’ev and Yu. S. Samoilenko, “The spaces of trial and generalized functions of infinitely many variables,” Rep. Math. Phys., 14, No. 3, 323–348 (1978).

    MathSciNet  Google Scholar 

  88. Yu. G. Kondrat’ev, L. Silva, and L. Streit, “Generalized Appell systems,” Meth. Funct. Anal. Topol., 3, No. 3, 28–61 (1997).

    MathSciNet  Google Scholar 

  89. Yu. G. Kondrat’ev, L. Silva, L. Streit, and G. F. Us, “Analysis on Poisson and Gamma spaces,” Infinite Dimen. Anal. Quantum Probab. Relat. Top., 1, No. 1, 91–117 (1998).

    Article  Google Scholar 

  90. Yu. G. Kondrat’ev and L. Streit, “Spaces of white noise distributions: Constructions, descriptions, applications,” Rep. Math. Phys., 33, 341–366 (1993).

    Article  MathSciNet  Google Scholar 

  91. Yu. G. Kondrat’ev, L. Streit, W. Westercamp, and J. Yan, “Generalized functions in infinite-dimensional analysis,” Hiroshima Math. J., 28, 213–260 (1998).

    MathSciNet  Google Scholar 

  92. V. D. Koshmanenko and Yu. S. Samoilenko, “Isomorphism of Fock space with a space of functions of infinitely many variables,” Ukr. Math. J., 27, No. 5, 552–555 (1975).

    Article  Google Scholar 

  93. I. Kubo, H. H. Kuo, and A. N. Sengupta, “White noise analysis on a new space of Hida distributions,” Infinite Dimen. Anal. Quantum Probab. Relat. Top., 2, No. 3, 315–335 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  94. T. Lindstrom, B. Oksendal, and J. Uboe, “Wick multiplication and Itô–Skorokhod stochastic differential equations,” Ideas Meth. Math. Anal., Stochastics Appl., Cambridge Univ. Press (1992), pp. 183–206.

  95. E. W. Lytvynov, “Multiple Wiener integrals and non-Gaussian white noise analysis: a Jacobi field approach,” Meth. Funct. Anal. Topol., 1, No. 1, 61–85 (1995).

    MATH  MathSciNet  Google Scholar 

  96. E. W. Lytvynov, “Orthogonal decompositions for Lévy processes with application to the Gamma, Pascal, and Meixner processes,” Infinite Dimen. Anal. Quantum Probab. Relat. Top., 6, No. 1, 73–102 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  97. E. W. Lytvynov, “Polynomials of Meixner’s type in infinite dimensions—Jacobi fields and orthogonality measures,” J. Funct. Anal., 200, No. 1, 118–149 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  98. J. Meixner, “Orthogonale Polynomsysteme mit einer besonderen Gestalt der erzeugen-den Funktion,” J. London Math. Soc., 9, No. 1, 6–13 (1934).

    Article  MATH  Google Scholar 

  99. N. V. Norin, “An extended stochastic integral for non-Gaussian measures in local-convex spaces,” Usp. Mat. Nauk, 41, No. 3, 199–200 (1986).

    MathSciNet  Google Scholar 

  100. N. V. Norin, “Stochastic integrals and differentiable measures,” Teor. Ver. Prilozhen., 32, No. 1, 114–124 (1987).

    MATH  MathSciNet  Google Scholar 

  101. D. Nualart and W. Schoutens, “Chaotic and predictable representations for Lévy processes,” Stochast. Proc. Appl., 90, 109–122 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  102. N. Obata, “Inverse S-transform, Wick product, and overcompleteness of exponential vectors. Quantum information,” Vol. 4, World Scientific, River Edge, NJ (2002), pp. 147–176.

    Google Scholar 

  103. N. Obata, “Unitarity criterion in white noise calculus and nonexistence of unitary evolutions driven by higher powers of quantum white noises,” Stochastic Models, II (Spanish), Aportaciones Mat. Investig., Soc. Mat. Mexicana, 16, 251–269 (2001).

    MathSciNet  Google Scholar 

  104. N. Obata, “Wick product of white noise operators and quantum stochastic differential equations,” J. Math. Soc. Jpn., 51, No. 3, 613–641 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  105. H. Ouerdiane, “Algèbres nucléaires de fonctions entières et equations aux dérivées partielles stochastiques,” Nagoya Math. J., 151, 107–127 (1998).

    MATH  MathSciNet  Google Scholar 

  106. H. Ouerdiane, “Distributions gaussiennes et applications aux equations aux dérivées partielles stochastiques,” Math. Phys. Stochast. Anal., World Scientific, River Edge, NJ (2000), pp. 318–331.

  107. A. Yu. Pylypenko, “On the properties of an operator of stochastic differentiation constructed on a group,” Ukr. Math. J., 48, No. 4, 623–630 (1996).

    Article  Google Scholar 

  108. I. V. Rodionova, “Analysis connected with generating functions of exponential type in one and infinite dimensions,” Meth. Funct. Anal. Topol., 11, No. 3, 275–297 (2005).

    MATH  MathSciNet  Google Scholar 

  109. A. V. Skorokhod, Integration in Hilbert Space, Springer, Berlin (1974).

    MATH  Google Scholar 

  110. A. V. Skorokhod, “On the generalization of stochastic integrals,” Teor. Ver. Prilozhen., 20, No. 2, 223–238 (1975).

    Google Scholar 

  111. O. G. Smolianov, “Differentiable measures on the group of functions taking values in a compact Ide group,” Abstr. 6th Internat. Vilnius Conf. on Probab. Theory Math. Stat., Vilnius (1993), pp. 139–140.

  112. V. A. Tesko, “Spaces appearing in the construction of infinite-dimensional analysis according to the biorthogonal scheme,” Ukr. Math. J., 56, No. 7, 1166–1181 (2004).

    MathSciNet  Google Scholar 

  113. N. V. Tsilevich, A. M. Vershik, and M. Yor, “An infinite-dimensional analogue of the Lebesgue measure and selected properties of the gamma process,” J. Funct. Anal., 185, No. 1, 274–296 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  114. N. V. Tsilevich, A. M. Vershik, and M. Yor, “Markov–Krein identity and quasiinvariance of the gamma-process,” Zapiski St-Peterburg. Otdel. Steklov Mat. Inst., 283, 21–36 (2001).

    Google Scholar 

  115. N. V. Tsilevich and A. M. Vershik, “Quasi-invariance of the gamma process and multiplicative properties of the Poisson–Dirichlet measures,” C. R. Acad. Sci. Ser. I Math., 2, 163–168 (1999).

    MathSciNet  Google Scholar 

  116. G. F. Us, “Dual Appell systems in Poisson analysis,” Meth. Funct. Anal. Topol., 1, No. 1, 93–108 (1995).

    MATH  MathSciNet  Google Scholar 

  117. G. F. Us, “Toward a colored noise analysis,” Meth. Funct. Anal. Topol., 3, No. 2, 83–99 (1997).

    MATH  MathSciNet  Google Scholar 

  118. E. Yablonsky, “Characterization of operators on a Kondrat’ev space in the non-Gaussian setting: biorthogonal approach,” Infinite Dimen. Anal. Quantum Probab. Relat. Top., 8, No. 3, 439–452 (2005).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 62, No. 9, pp. 1220–1246, September, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kachanovsky, N.A. Elements of a non-gaussian analysis on the spaces of functions of infinitely many variables. Ukr Math J 62, 1420–1448 (2011). https://doi.org/10.1007/s11253-011-0440-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-011-0440-0

Keywords

Navigation