Skip to main content
Log in

On Fourier multipliers and absolute convergence of Fourier integrals of radial functions

  • Published:
Ukrainian Mathematical Journal Aims and scope

We obtain sufficient conditions for the representability of a function in the form of an absolutely convergent Fourier integral. These conditions are given in terms of the joint behavior of the function and its derivatives at infinity, and their efficiency and exactness are verified with the use of a known example. We also consider radial functions of an arbitrary number of variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University, Princeton (1970).

    MATH  Google Scholar 

  2. S. G. Samko and G. S. Kostetskaya, “Absolute integrability of Fourier integrals,” Vestn. Ros. Univ. Druzhby Narodov, Ser. Mat., 1, 138–168 (1994).

    Google Scholar 

  3. E. Liflyand and R. Trigub, Known and New Results on Absolute Integrability of Fourier Integrals, Preprint CRM 859 (2009).

  4. C. Fefferman, “Inequalities for strongly singular convolution operators,” Acta Math., 124, 9–36 (1970).

    Article  MATH  MathSciNet  Google Scholar 

  5. E. M. Stein, “Singular integrals, harmonic functions, and differentiability properties of functions of several variables,” Proc. Symp. Pure Math., 10, 316–335 (1967).

    Google Scholar 

  6. E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University, Princeton (1971).

    MATH  Google Scholar 

  7. R. M. Trigub, “On comparison of linear differential operators,” Mat. Zametki, 82, 426–440 (2007).

    MathSciNet  Google Scholar 

  8. O. V. Besov, V. P. Il’in, and S. M. Nikol’skii, Integral Representations of Functions and Imbedding Theorems [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  9. E. S. Belinsky, M. Z. Dvejrin, and M. M. Malamud, “Multipliers in L 1 and estimates for systems of differential operators,” Russ. J. Math. Phys., 12, 6–16 (2005).

    MATH  MathSciNet  Google Scholar 

  10. R. M. Trigub, “Absolute convergence of Fourier integrals, summability of Fourier series, and approximation of functions by polynomials on a torus,” Izv. Akad. Nauk SSSR, Ser. Mat., 44, No. 6, 1378–1408 (1980).

    MATH  MathSciNet  Google Scholar 

  11. R. M. Trigub and E. S. Belinsky, Fourier Analysis and Approximation of Functions, Kluwer, Dordrecht (2004).

    MATH  Google Scholar 

  12. O. V. Besov, “On the Hörmander theorem on Fourier multipliers,” Tr. Mat. Inst. Akad. Nauk SSSR, 173, 164–180 (1986).

    Google Scholar 

  13. A. Beurling, “On the spectral synthesis of bounded functions,” Acta Math., 81, 225–238 (1949).

    Article  MATH  Google Scholar 

  14. H. Bateman and A. Erdélyi, Higher Transcendental Functions, Vol. 2, McGraw-Hill, New York (1954).

    Google Scholar 

  15. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Integrals and Derivatives of Fractional Order and Some Their Applications [in Russian], Nauka i Tekhnika, Minsk (1987).

    Google Scholar 

  16. V. N. Konovalov, “Exact inequalities for norms of functions, third partial derivatives, second mixed derivatives, or oblique derivatives,” Mat. Zametki, 23, No. 1, 67–78 (1978).

    MATH  MathSciNet  Google Scholar 

  17. V. N. Konovalov, “Estimates for widths of the Kolmogorov type for classes of differentiable periodic functions,” Mat. Zametki, 35, No. 3, 369–380 (1984).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 62, No. 9, pp. 1280–1293, September, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trigub, R.M. On Fourier multipliers and absolute convergence of Fourier integrals of radial functions. Ukr Math J 62, 1487–1501 (2011). https://doi.org/10.1007/s11253-011-0444-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-011-0444-9

Keywords

Navigation