Skip to main content
Log in

On an unbounded order parameter in lattice equilibrium GKS-type oscillator systems

  • Published:
Ukrainian Mathematical Journal Aims and scope

The existence of an unbounded order parameter (magnetization) is established for a broad class of lattice Gibbs (equilibrium) systems of linear oscillators interacting via a strong pair nearest-neighbor polynomial potential and other many-body potentials. The considered systems are characterized by a general polynomial short-range interaction potential energy that generates Gibbs averages satisfying two generalized GKS inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. Skrypnik, “LRO in lattice systems of linear oscillators with strong bilinear pair nearest-neighbour interaction,” J. Phys. A, 32, 7039–7048 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  2. W. Skrypnik, “LRO in lattice systems of linear classical and quantum oscillators. Strong nearest-neighbor pair quadratic interaction,” J. Stat. Phys., 100, No. 5/6, 853–870 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  3. W. I. Skrypnik, “Long-range order in linear ferromagnetic oscillator systems. Strong pair quadratic n-n potential,” Ukr. Mat. Zh., 56, No. 6, 810–817 (2004).

    MATH  MathSciNet  Google Scholar 

  4. W. Skrypnik, “Long-range order in Gibbs lattice classical linear oscillator systems,” Ukr. Mat. Zh., 58, No. 3, 388–405 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  5. J. Fröhlich and E. Lieb, “Phase transitions in anisotropic lattice spin systems,” Commun. Math. Phys., 60, 233–267 (1978).

    Article  Google Scholar 

  6. S. Shlosman, “Reflection positivity method in mathematical theory of first-order phase transitions,” Usp. Mat. Nauk, 41, No. 3, 69 (1986).

    MathSciNet  Google Scholar 

  7. Ya. G. Sinai, Theory of Phase Transitions. Rigorous Results [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  8. D. Ruelle, “Probability estimates for continuous spin systems,” Commun. Math. Phys., 50, 189–194 (1976).

    Article  MathSciNet  Google Scholar 

  9. W. Skrypnik, “Long-range order in non-equilibrium systems of interacting Brownian linear oscillators,” J. Stat. Phys., 111, No. 1/2, 291–321 (2002).

    Article  MathSciNet  Google Scholar 

  10. H. Kunz and B. Payandeh, “Existence of a phase transition for a class of ferroelectric models near the displacive limit,” Phys. Rev. B, 18, 2276–2280 (1978).

    Article  Google Scholar 

  11. M. Biskup, L. Chayes, and S. Kivelson, “On the absence of ferromagnetism in typical ferromagnets,” Arxiv math-ph/0608009. 2006.

  12. A. Giuliani, J. Lebowitz, and E. Lieb, “Ising models with long-range dipolar and short range interactions,” Arxiv cond-mat/0604668.

  13. J. Bricmont and J.-R. Fontaine, “Correlation inequalities and contour estimates,” J. Stat. Phys., 26, No. 4, 745 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  14. B. Simon, The P(ϕ)2 Euclidean (Quantum) Field Theory, Princeton University Press, Princeton, NJ (1974).

    Google Scholar 

  15. J. Ginibre, “General formulation of Griffiths’ inequalities,” Commun. Math. Phys., 16, 310–328 (1970).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 61, No. 4, pp. 538–547, April, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skrypnik, W.I. On an unbounded order parameter in lattice equilibrium GKS-type oscillator systems. Ukr Math J 61, 645–656 (2009). https://doi.org/10.1007/s11253-009-0230-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-009-0230-0

Keywords

Navigation