Skip to main content
Log in

Tame comodule type, roiter bocses, and a geometry context for coalgebras

  • Published:
Ukrainian Mathematical Journal Aims and scope

We study the class of coalgebras C of fc-tame comodule type introduced by the author. With any basic computable K-coalgebra C and a bipartite vector v = (v′|v″) ∈ K 0(C) × K 0(C), we associate a bimodule matrix problem Mat v C (ℍ), an additive Roiter bocs B C v , an affine algebraic K-variety Comod C v , and an algebraic group action G C v × Comod C v Comod C v . We study the fc-tame comodule type and the fc-wild comodule type of C by means of Mat v C (ℍ), the category rep K (B C v ) of K-linear representations of B C v , and geometry of G C v -orbits of Comod C v . For computable coalgebras C over an algebraically closed field K, we give an alternative proof of the fc-tame-wild dichotomy theorem. A characterization of fc-tameness of C is given in terms of geometry of G C v -orbits of Comod v . In particular, we show that C is fc-tame of discrete comodule type if and only if the number of G C v -orbits in Comod C v is finite for every v = (v′|v″) ∈ K 0(C) × K 0(C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Assem, D. Simson, and A. Skowroński, “Elements of the representation theory of associative algebras. Vol. 1. Techniques of representation theory,” in: London Math. Soc. Student Texts 65, Cambridge University Press, Cambridge–New York (2006).

    Google Scholar 

  2. W. Chin, “A brief introduction to coalgebra representation theory,” Lect. Notes Pure Appl. Math., 237, 109–131 (2004).

    MathSciNet  Google Scholar 

  3. W. W. Crawley-Boevey, “On tame algebras and bocses,” Proc. London Math. Soc., 56, 451–483 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  4. W. W. Crawley-Boevey, “Matrix problems and Drozd’s theorem,” in: S. Balcerzyk, T. J´ozefiak, J. Krempa, D. Simson, and W. Vogel (editors), Topics Algebra, Pt. I: Rings and Represent. Algebras, PWN, Warszawa (1990), pp. 199–222.

  5. Ju. A. Drozd, “Matrix problems and categories of matrices,” Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI), 28, 144–153 (1972).

    MathSciNet  Google Scholar 

  6. Ju. A. Drozd, “Representations of commutative algebras,” Funkts. Anal. Prilozhen., 6, 41–43 (1972).

    MathSciNet  Google Scholar 

  7. Ju. A. Drozd, “Tame and wild matrix problems,” in: Represent. and Quadr. Forms [in Russian], Institute of Mathematics, Ukrainian National Academy of Sciences, Kiev (1979), pp. 39–74.

  8. Ju. A. Drozd and V. V. Kirichenko, Finite-Dimensional Algebras, Springer, Berlin (1994).

    MATH  Google Scholar 

  9. Ju. A. Drozd, S. A. Ovsienko, and B. Ju. Furchin, “Categorical constructions in representation theory,” in: Algebr. Structures and Appl. [in Russian], UMK VO, Kiev (1988), pp. 43–73.

  10. P. Gabriel and A. V. Roiter, “Representations of finite-dimensional algebras,” Algebra VIII: Encyclopedia Math. Sci., 73 (1992).

  11. P. Jara, L. Merino, and G. Navarro, “Localization in tame and wild coalgebras,” J. Pure Appl. Algebra, 211, 342–359 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  12. S. Kasjan and D. Simson, “Varieties of poset representations and minimal posets of wild prinjective type,” Represent. Algebras: Can. Math. Soc. Conf. Proc., 14, 245–284 (1993).

    MathSciNet  Google Scholar 

  13. M. Kleiner and A. V. Roiter, “Representations of differential graded categories,” in: Matrix Problems [in Russian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1977), pp. 5–70.

    Google Scholar 

  14. M. Kleiner and A. V. Roiter, “Abelian categories, almost split sequences and comodules,” Trans. Amer. Math. Soc., 357, 3201–3214 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  15. H. Kraft and K. Riedtmann, “Geometry of representations of quivers,” Represent. Algebras: London Math. Soc. Lect. Notes, 116, 109–145 (1986).

    MathSciNet  Google Scholar 

  16. S. Montgomery, “Hopf algebras and their actions on rings,” CMBS, No. 82 (1993).

  17. J. A. de la Peña and D. Simson, “Prinjective modules, reflection functors, quadratic forms and Auslander–Reiten sequences,” Trans. Amer. Math. Soc., 329, 733–753 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  18. D. Simson, “Linear representations of partially ordered sets and vector space categories,” Algebra, Logic Appl., 4 (1992).

  19. D. Simson, “Representation embedding problems, categories of extensions and prinjective modules,” in: R. Bautista, R. Martinez-Villa, and J. A. de la Peña (editors), Represent. Theory Algebras, Can. Math. Soc. Conf. Proc., 18, (1996), pp. 601–639.

  20. D. Simson, “Prinjective modules, propartite modules, representations of bocses and lattices over orders,” J. Math. Soc. Jpn., 49, 1–68 (1997).

    Article  Google Scholar 

  21. D. Simson, “Coalgebras, comodules, pseudocompact algebras and tame comodule type,” Colloq. Math., 90, 101–150 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  22. D. Simson, “Path coalgebras of quivers with relations and a tame-wild dichotomy problem for coalgebras,” Lect. Notes Pure Appl. Math., 236, 465–492 (2004).

    MathSciNet  Google Scholar 

  23. D. Simson, “On Corner type Endo–Wild algebras,” J. Pure Appl. Algebra, 202, 118–132 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  24. D. Simson, “Path coalgebras of profinite bound quivers, cotensor coalgebras of bound species and locally nilpotent representations,” Colloq. Math., 109, 307–343 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  25. D. Simson, “Localising embeddings of comodule categories with applications to tame and Euler coalgebras,” J. Algebra, 312, 455–494 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  26. D. Simson, “Hom-computable coalgebras, a composition factors matrix and the Euler bilinear form of an Euler coalgebra,” J. Algebra, 315, 42–75 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  27. D. Simson, “Representation-directed incidence coalgebras of intervally finite posets and the tame-wild dichotomy,” Commun. Algebra, 36, 2764–2784 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  28. D. Simson, “Tame-wild dichotomy for coalgebras,” J. London Math. Soc., 78, 783–797 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  29. Woodcock D., “Some categorical remarks on the representation theory of coalgebras,” Commun. Algebra, 25, 775–2794 (1997).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 61, No. 6, pp. 810–833, June, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simson, D. Tame comodule type, roiter bocses, and a geometry context for coalgebras. Ukr Math J 61, 964–987 (2009). https://doi.org/10.1007/s11253-009-0253-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-009-0253-6

Keywords

Navigation