Skip to main content
Log in

On the integral characterization of some generalized quasiregular mappings and the significance of the conditions of divergence of integrals in the geometric theory of functions

  • Published:
Ukrainian Mathematical Journal Aims and scope

The paper deals with the theory of space mappings. For a generalization of quasiregular mappings important for the investigation of the Sobolev and other known classes of mappings, we propose a simple condition satisfied by all mappings of this kind and only by these mappings. On the basis of conditions of divergence of the integrals, we establish sufficient conditions for the normality of the families of the analyzed classes of mappings and solve the problem of removing isolated singularities. Some applications of the obtained results to mappings from the Sobolev class are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. J. Väisälä, Lectures on n-Dimensional Quasiconformal Mappings, Springer, Berlin (1971).

    MATH  Google Scholar 

  2. S. Rickman, “Quasiregular mappings,” Results Math. Relat. Areas, 26, No. 3 (1993).

  3. Yu. G. Reshetnyak, Space Mappings with Bounded Distortion [in Russian], Nauka, Novosibirsk (1982).

    Google Scholar 

  4. O. Martio, V. Ryazanov, U. Srebro, and E. Yakubov, “On Q-homeomorphisms,” Ann. Acad. Sci. Fenn. Ser. A1. Math., 30, No. 1, 49–69 (2005).

    MATH  MathSciNet  Google Scholar 

  5. C. J. Bishop, V. Ya. Gutlyanskii, O. Martio, and M. Vuorinen, “On conformal dilatation in space,” Int. J. Math. Math. Sci., 22, 1397–1420 (2003).

    Article  MathSciNet  Google Scholar 

  6. V. M. Miklyukov, Conformal Mapping of an Irregular Surface and Its Applications [in Russian], Volgograd University, Volgograd (2005).

    Google Scholar 

  7. Yu. F. Strugov, “Compactness of the classes of mappings quasiconformal in the mean,” Dokl. Akad. Nauk SSSR, 243, No. 4, 859–861 (1978).

    MathSciNet  Google Scholar 

  8. O. Martio, V. Ryazanov, U. Srebro, and E. Yakubov, “Mappings with finite length distortion,” J. Anal. Math., 93, 215–236 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  9. T. Iwaniec and G. Martin, Geometrical Function Theory and Nonlinear Analysis, Clarendon, Oxford (2001).

    Google Scholar 

  10. B. V. Shabat, “On the theory of quasiconformal mappings in the space,” Dokl. Akad. Nauk SSSR, 132, No. 5, 1045–1048 (1960).

    MathSciNet  Google Scholar 

  11. V. A. Zorich, “Admissible order of growth of the characteristic of quasiconformality in the Lavrent’ev theorem,” Dokl. Akad. Nauk SSSR, 181, No. 3, 530–532 (1968).

    MathSciNet  Google Scholar 

  12. O. Lehto, “Homeomorphisms with a prescribed dilatation,” in: Lecture Notes in Mathematics, Vol. 118, Springer, Berlin (1968), pp. 58–73.

    Google Scholar 

  13. V. I. Ryazanov and E. A. Sevost’yanov, “Equicontinuous classes of ring Q-homeomorphisms,” Sib. Mat. Zh., 48, No. 6, 1361–1376 (2007).

    MATH  MathSciNet  Google Scholar 

  14. F. W. Gehring, “Rings and quasiconformal mappings in space,” Trans. Amer. Math. Soc., 103, 353–393 (1962).

    Article  MATH  MathSciNet  Google Scholar 

  15. V. Ryazanov, U. Srebro, and E. Yakubov, “On ring solutions of Beltrami equations,” J. Anal. Math., 96, 117–150 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  16. B. V. Bojarski, V. Gutlyanskii, and V. Ryazanov, “General Beltrami equations and BMO;” Ukr. Math. Bull., 5, No. 3, 305–326 (2008).

    MathSciNet  Google Scholar 

  17. S. Saks, Theory of the Integral, PWN, Warsaw (1937).

    Google Scholar 

  18. G. T. Whyburn, Analytic Topology, American Mathematical Society, Providence, RI (1942).

    MATH  Google Scholar 

  19. E. A. Sevost’yanov, “Theory of modules and capacities and the normal families of mappings admitting ramification,” Ukr. Mat. Vestn., 4, No. 4, 583–604 (2007).

    MathSciNet  Google Scholar 

  20. E. A. Sevost’yanov, “Liouville, Picard, and Sokhotskii theorems for ring mappings,” Ukr. Mat. Vestn., 5, No. 3, 366–381 (2008).

    MathSciNet  Google Scholar 

  21. W. Hurewicz and H. Wallman, Dimension Theory, Princeton University Press, Princeton (1948).

    MATH  Google Scholar 

  22. C. J. Titus and G. S. Young, “The extension of interiority with some applications,” Trans. Amer. Math. Soc., 103, 329–340 (1962).

    Article  MATH  MathSciNet  Google Scholar 

  23. V. M. Gol’dshtein and Yu. G. Reshetnyak, Introduction to the Theory of Functions with Generalized Derivatives and Quasiconformal Mappings [in Russian], Nauka, Moscow (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 61, No. 10, pp. 1367–1380, October, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sevost’yanov, E.A. On the integral characterization of some generalized quasiregular mappings and the significance of the conditions of divergence of integrals in the geometric theory of functions. Ukr Math J 61, 1610–1623 (2009). https://doi.org/10.1007/s11253-010-0301-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-010-0301-2

Keywords

Navigation