Skip to main content
Log in

On simple n-tuples of subspaces of a Hilbert space

  • Published:
Ukrainian Mathematical Journal Aims and scope

This survey is devoted to the structure of “simple” systems \( S = \left( {\mathcal{H};{\mathcal{H}_1}, \ldots, {\mathcal{H}_n}} \right) \) of subspaces \( {\mathcal{H}_i} \), i = 1,…, n, of a Hilbert space \( \mathcal{H} \), i.e., n-tuples of subspaces such that, for each pair of subspaces \( {\mathcal{H}_i} \) and \( {\mathcal{H}_j} \), the angle 0 < θ ij π/2 between them is fixed. We give a description of “simple” systems of subspaces in the case where the labeled graphs naturally associated with these systems are trees or unicyclic graphs and also in the case where all subspaces are one-dimensional. If the cyclic range of a graph is greater than or equal to two, then the problem of description of all systems of this type up to unitary equivalence is *-wild.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Albeverio, V. Ostrovskyi, and Y. Samoilenko, “On functions on graphs and representations of a certain class of *-algebras,” J. Algebra, 308, No. 2, 567–582 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  2. S. Brenner, “Endomorphism algebras of vector spaces with distinguished sets of subspaces,” J. Algebra, 6, 100–114 (1967).

    Article  MATH  MathSciNet  Google Scholar 

  3. D. M. Cvetković, M. Doob, and H. Sachs, Spectra of Graphs. Theory and Applications, VEB Deutscher Verlag der Wissenschaften, Berlin (1980).

    Google Scholar 

  4. C. Davis, “Separation of two linear subspaces,” Acta Sci. Math. (Szeged), 19, 172–187 (1958).

    MATH  MathSciNet  Google Scholar 

  5. J. Dixmier, “Position relative de deux variétés dans un espace de Hilbert,” Rev. Sci., 86, 387–399 (1948).

    MATH  MathSciNet  Google Scholar 

  6. V. Dlab and C. Ringel, “Indecomposable representation of graphs and algebras,” Mem. Amer. Math. Soc., 6, No. 173 (1976).

    Google Scholar 

  7. P.W. Donovan and M. R. Freislich, “The representation theory of finite graphs and associated algebras,” Carleton Math. Lect. Notes, 5, 1–119 (1973).

    MathSciNet  Google Scholar 

  8. M. Enomoto and Y. Watatani, “Relative position of four subspaces in a Hilbert space,” Adv. Math., 201, 263–317 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  9. I. M. Gelfand and V. A. Ponomarev, “Problems of linear algebra and classification of quadruples of subspaces in a finite-dimensional vector space,” in: Proceedings of the International Conference “Hilbert Space Operators and Operator Algebras” (Tihany, 1970), North-Holland, Amsterdam (1972), pp. 163–237.

    Google Scholar 

  10. F. M. Goodman, P. Harpe, and V. F. E. Jones, Coxeter Graphs and Towers of Algebras, Springer, New York (1989).

    MATH  Google Scholar 

  11. J. J. Graham, Modular Representations of Hecke Algebras and Related Algebras, Ph.D. Thesis, University, Sydney (1995).

  12. P. R. Halmos, “Two subspaces,” Trans. Amer. Math. Soc., 144, 381–389 (1969).

    Article  MATH  MathSciNet  Google Scholar 

  13. S.V. Ivanov, “On *-representations of algebras given by graphs,” Meth. Funct. Anal. Topol., No. 1, 17–27 (2007).

  14. V. Jones and V. S. Sunder, Introduction to Subfactors, Cambridge University, Cambridge (1997).

    Book  MATH  Google Scholar 

  15. C. Jordan, “Essai sur la géométrie à n dimensions,” Bull. Soc. Math. France, 3, 103–174 (1875).

    Google Scholar 

  16. V. G. Kac, “Infinite root systems, representations of graphs and invariant theory,” Invent. Math., 56, 57–92 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  17. S. A. Kruglyak and Yu. S. Samoĭlenko, “On complexity of description of representations of *-algebras generated by idempotents,” Proc. Amer. Math. Soc., 128, No. 6, 1655–1664 (2000).

    Article  MathSciNet  Google Scholar 

  18. V. L. Ostrovskyĭ and Yu. S. Samoĭlenko, Introduction to the Theory of Representations of Finitely Presented *-Algebras. I. Representations by Bounded Operators, Harwood, Amsterdam (1999).

    Google Scholar 

  19. N. D. Popova, “On finite-dimensional representations of one algebra of Temperley–Lieb type,” Meth. Funct. Anal. Topol., 7, No. 3, 80–92 (2001).

    MATH  MathSciNet  Google Scholar 

  20. N. D. Popova and Yu. S. Samoilenko, “On the existence of configurations of subspaces in a Hilbert space with fixed angles,” SIGMA Symmetry Integrability Geom. Meth. Appl., 2, No. 055, 1–5 (2006).

    MathSciNet  Google Scholar 

  21. D. Simson, “Linear representations of partially ordered sets and vector space categories,” Algebra, Logic, Appl., Vol. 4 (1992).

  22. V. S. Sunder, “N subspaces,” Can. J. Math., 40, 38–54 (1988).

    MATH  MathSciNet  Google Scholar 

  23. H. N.V. Temperley and E. H. Lieb, “Relations between ‘percolations’ and ‘colouring’ problems and other graph theoretical problems associated with regular planar lattices: some exact results for the percolation problem,” J. Proc. Roy. Soc. London, Ser. A, 322, 251–280 (1971).

    Article  MATH  MathSciNet  Google Scholar 

  24. M. Vlasenko, “On the growth of an algebra generated by a system of projections with fixed angles,” Meth. Funct. Anal. Topol., 10, No. 1, 98–104 (2004).

    MATH  MathSciNet  Google Scholar 

  25. N. Bourbaki, Groupes et Algèbres de Lie. Chapitre IV–VI, Hermann, Paris (1968).

  26. M. A. Vlasenko and N. D. Popova, “On configurations of subspaces of a Hilbert space with fixed angles between them,” Ukr. Mat. Zh., 56, No. 5, 606–615 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  27. Yu. A. Drozd, “Coxeter transformations and representations of posets,” Funkts. Anal. Prilozhen., 8, No. 3, 34–42 (1974).

    MathSciNet  Google Scholar 

  28. A. G. Zavadskii and L. A. Nazarova, “Posets of finite growth,” Funkts. Anal. Prilozhen., 16, No. 2, 72–73 (1982).

    MathSciNet  Google Scholar 

  29. M. M. Kleiner, “Posets of finite type,” Zap. Nauchn. Sem. LOMI Akad. Nauk SSSR, 28, 32–41 (1972).

    MathSciNet  Google Scholar 

  30. S. Kruglyak, V. Rabanovich, and Yu. Samoilenko, “On sums of projectors,” Funkts. Anal. Prilozhen., 36, No. 3, 20–35 (2002).

    MathSciNet  Google Scholar 

  31. S. A. Kruglyak and A. V. Roiter, “Locally scalar representations of graphs in a category of Hilbert spaces,” Funkts. Anal. Prilozhen., 39, No. 2, 13–30 (2005).

    MathSciNet  Google Scholar 

  32. S. A. Kruglyak and Yu. S. Samoilenko, “On unitary equivalence of collections of self-adjoint operators,” Funkts. Anal. Prilozhen., 14, No. 1, 60–62 (1980).

    MathSciNet  Google Scholar 

  33. Yu. P. Moskaleva and Yu. S. Samoilenko, Introduction to the Spectral Theory of Graphs [in Russian], Tsentr Uchebnoi Literatury, Kiev (2007).

    Google Scholar 

  34. L. A. Nazarova, “Representations of a tetrad,” Izv. Akad. Nauk SSSR, Ser. Mat., 31, No. 6, 1361–1378 (1967).

    MathSciNet  Google Scholar 

  35. L. A. Nazarova, “Representations of quivers of infinite type,” Izv. Akad. Nauk SSSR, Ser. Mat., 37, 752–791 (1973).

    MATH  MathSciNet  Google Scholar 

  36. L. A. Nazarova and A. V. Roiter, “Representations of posets,” Zap. Nauchn. Sem. LOMI Akad. Nauk. SSSR, 28, 5–31 (1972).

    MathSciNet  Google Scholar 

  37. V. L. Ostrovs’kyi and Yu. S. Samoilenko, “On spectral theorems for families of linearly connected self-adjoint operators with given spectra associated with extended Dynkin graphs,” Ukr. Mat. Zh., 58, No. 11, 1556–1570 (2006).

    Google Scholar 

  38. Yu. S. Samoilenko and L. M. Tymoshkevych, “On the spectral theory of Coxeter graphs,” U Sviti Mat., 15, No. 3, 14–24 (2009).

    Google Scholar 

  39. V. A. Ufnarovskii, “Combinatorial and asymptotic methods in algebra,” in: VINITI Series in Contemporary Problems of Mathematics. Fundamental Trends [in Russian], Vol. 57, VINITI, Moscow (1990), pp. 5–177.

    Google Scholar 

  40. R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University, Cambridge (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 61, No. 12, pp. 1668–1703, December, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samoilenko, Y.S., Strelets, A.V. On simple n-tuples of subspaces of a Hilbert space. Ukr Math J 61, 1956–1994 (2009). https://doi.org/10.1007/s11253-010-0325-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-010-0325-7

Keywords

Navigation